УДК 614.31:637.5

Д.Ю. Некрасов, А.Е. Жедулов, И.В. Батов, А.В. Сорокин Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов (ФГБУ «ВГНКИ») (г. Москва, Российская Федерация)

ОПРЕДЕЛЕНИЕ ОСТАТОЧНОГО СОДЕРЖАНИЯ МЕТАБОЛИТОВ НИТРОФУРАНОВ В ПРОДУКЦИИ ЖИВОТНОВОДСТВА МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ С МАСС-СПЕКТРОМЕТРИЧЕСКИМ ДЕТЕКТИРОВАНИЕМ

Нитрофураны являются синтетическими антибактериальными средствами, получившими широкое применение в медицине и ветеринарии. Токсикологические исследования показали канцерогенные, тератогенные и мутагенные свойства нитрофуранов и их метаболитов. Поэтому данные соединения относят к запрещенным лекарственным средствам.

(a) (b)
$$H_2N$$
(b) H_2N
(c) H_2N
(d) H_2N
(e) H_2N
(f) H_2N
(g) H_2N
(h) H

Рисунок – 1 Структурные формулы метаболитов нитрофуранов: 3-амино-2-оксазолидинон (AO3) (а), 3-амино-5-метилморфолино-2-оксазолидинон AMO3 (б), семикарбазид (СЕМ) (в), 1-амино-гидантоин (АГД) (г), 3,5-динитросалициловой кислоты гидразид (ДСГ) (д)

Существуют расхождения между нормативными актами ЕС и Таможенного Союза, регулирующими содержание нитрофуранов и их метаболитов в продукции животноводства. Появилась необходимость разработки актуального арбитражного метода определения, применимого в рамках законодательства Таможенного союза и имеющего предел количественного определения на уровне 0,5 мкг/кг.

Нитрофураны не определяют непосредственно. Главная стратегия — определение маркерных дериватов метаболитов нитрофуранов. В организме нитрофураны метаболизируют, метаболиты, извлекаемые из пробы, подвергают процедуре дериватизации, дериваты идентифицируют и количественно определяют. В качестве дериватизирующего агента чаще всего выступает 2-нитробензилальдегид (НБА) [1]. Опробовано применение других дериватизирующих агентов, например 4-(карбазол-9-ил)бензилхлорформиата [2], 7-(диэтиламино)-2-оксохромен-3-карбальдегида [3]. Следует отметить, что большинство новых дериватизирующих агентов не используют в методе ВЭЖХ-МС/МС, который является наиболее чувствительным среди подтверждающих методов количественного анализа.

Для приложения MC/MC интересным решением является новый дериватизирующий агент 5-нитро-2-фуральдегид (**5-НФА**) [4]. Процедура дериватизации позволяет получить начальные нитрофураны. Авторы также описали модификацию подготовки проб.

В исследовании использовались следующие стандартные образцы метаболитов нитрофуранов и их изотопные аналоги: АОЗ АМОЗ, АГД, СЕМ, 3,5-динитросалициловой кислоты гидразид (ДСГ), d4-AO3, d5-AMO3, 1,2-N15, C13-CEM, (C13)3-АГД. Растворы стандартных образцов приготовили в метанолеи хранили в морозильной камере при минус 20 °C.

Таблица 1 – Хроматографические условия разделения метаболитов

нитрофуранов							
Время,	Поток,	Фаза А	Фаза В				
мин.	см ³ /мин	(об.%)	(об.%)				
0,0	0,25	95	5				
2,0	0,25	95	5				
2,1	0,25	75	25				
10,1	0,25	0	100				
11,4	0,25	0	100				
11,5	0,25	95	5				
15	0,25	95	5				

Хроматографическое разделение проводили при помощи хроматографа Agilent 1290 (США) и обращённо-фазовой колонки Agilent Pursuit 5 C18 (150 мм \times 2,0 мм, 5 мкм). Подвижная фаза А — вода с 0,5 % муравьиной кислоты, формиат аммония с концентрацией 2 г/л, подвижная фаза Б — ацетонитрил-вода 9-1 с 0,25 % муравьиной кислоты, формиат аммония с концентрацией 2 г/л. Разделение аналитов проводили в градиентном режиме. Параметры приведены в таблице 1.

Масс-спектрометрический анализ проводили с помощью детектора AB Sciex QTRAP 6500 с ионизацией электроспреем (ESI). Детек-

тирование проводили в двух режимах: положительном для НФ-АОЗ, НФ-АМОЗ, НФ-АГД, НФ-СЕМ и отрицательном для НФ-ДСГ. Параметры МС-детектора приведены в таблице 2.

Таблица 2 – Параметры MRM-переходов метаболитов нитрофуранов

№	Аналит, Режим детекти- рования	Материн- ский ион, m/z	Дочерние ионы, m/z	Потенциал декластеризации, В	Энергия в ячейке соударений, эВ		
1 НФ-АОЗ (+)	236.100	134.100*	80	21			
		200.100	104.100	80	31		
2	НФ-АМОЗ (+)	335.200	291.100*	80	17		
	$\Pi\Phi$ -AMOS (+)		262.100	80	25		
3	НФ-АГД (+)	249.100	134.100*	50	18		
			104.100	60	27		
4	НФ-СЕМ (+)	209.100	192.100*	85	15		
			166.100	85	15		
5	НФ-ДСГ (-)	374.000	226.000*	-100	-32		
			182.900	-100	-35		
6	НФ-AO3-d4 (+)	240.100	134.100	141	23		
7	НФ-АМОЗ-d5 (-)	340.300	296.100	116	17		
8	НФ-АГД-3С ¹³ (+)	252.100	134.000	111	23		
9	НФ-СЕМ- 2N ¹⁵ ,С ^{13 (+)}	212.100	195.100	120	17		
* - pe	* – рекомендуемый ион-продукт для проведения количественного определения						

Подготовка проб основана на ГОСТ 32014, но переработана и модернизирована. К 3,0 г образца добавляют 8 см 3 0,1 М раствора соляной кислоты и 150 мм 3 раствора НБА в метаноле и выдерживают при температуре 37 °C 16 часов. После гидролиза и дериватизации добавляют 0,6 см 3 0,3 М раствора фосфата натрия доводят рН до значения (7,0 \pm 0,5) 2М раствором гидроксида натрия.

К нейтрализованному образцу добавляют 5 см³ этилацетата, встряхивают в шейкере, центрифугируют. Органический слой отбирают. Описанную процедуру экстракции проводят еще один раз.

Экстракты объединяют и упаривают на термостатируемом модуле при температуре 40 °C до объема 50-100 мм³. Добавляют 0,6 см³ раствора вода:фаза А 1:1, проводят очистку гексаном и используют для ВЭЖХ-МС/МС анализа. Объем инжекции 20 мм³. Допускается дополнительная очистка твердофазной экстракцией.

В ходе экспериментов были построены градуировочные зависимости на матричных образцах мышечной ткани, молока, молочной

продукции, субпродуктов, жировой ткани, яиц, рыбы, креветок, раков. Проведена оценка линейности и воспроизводимости методики, получены метрологические характеристики. Нижний предел количественного определения АОЗ, АМОЗ, СЕМ, ДСГ - 0,3 мкг/кг, АГД - 0,5 мкг/кг.

Методические указания прошли метрологическую аттестацию и находятся в процессе регистрации в Федеральном реестре методик выполнения измерений. В результате исследований разработана надёжная, воспроизводимая и актуальная методика определения метаболитов нитрофуранов методом ВЭЖХ-МС/МС, отвечающая всем требованиям пищевой безопасности Таможенного Союза.

ЛИТЕРАТУРА

- 1. Jorge Barbosa Detection, Accumulation, Distribution, and Depletion of Furaltadone and Nifursol Residues in Poultry Muscle, Liver, and Gizzard / Jorge Barbosa, Andreia Freitas, Sara Moura, Jose Luis Mourao, Maria Irene Noronha da Silveira and Fernando Ramos // J. Agric. Food Chem. 2011. 59. C. 11927–11934
- 2. Yu Y. Novel fluorescence labeling reagent 4-(carbazole-9-yl)-benzyl chloroformate and its application in the determination of nitrofuran metabolites compounds in foodstuffs by high performance liquid chromatography with fluorescence detection / Yu Y., Li N., Jin Q., Ji Z., Sun Z., Li G., Zhang S., You J. // Microchem. J. 2019. V. 145. C. 9
- 3. Luo X. Determination of nitrofuran metabolites in marine products by high performance liquid chromatography-fluorescence detection with microwave-assisted derivatization / Luo X., Sun Z., Wang X., Li G., You J. // New J. Chem. 2019. V. 43. C.2649
- 4. Мелехин А. О. Быстрый гидролиз и дериватизация метаболитов нитрофуранов с новым дериватизирующим агентом 5-нитро-2-фуральдегидом при их ВЭЖХ-МС/МС-определении в курином мясе / А. О. Мелехин, В. В. Толмачева, Ю. Н. Холявская Е. С. Седых, С. Г. Дмитриенко, В. В. Апяри, А. Л. Баиров // Журнал аналитической химии − 2022. том 77, № 10, С. 938–946.