Таким образом, в ходе экспериментов определены условия проведения анодирования алюминия в щавелевокислом электролите с добавкой суспензии углеродных нанотрубок. Показано влияние добавки суспензии углеродных нанотрубок на оксидно-алюминиевое покрытие связано с изменениеv цвета покрытия и напряжения анодирования.

ЛИТЕРАТУРА

1. Анодное оксидирование алюминия и его сплавов: справочник / В.Ф. Хенли; под общ. ред. В.С. Синявского – М.: Металлургия, 1986 – 152 с.

2. Ильин, В.А. Краткий справочник гальванотехника / В.А. Ильин. – СПб.: Политехника, 1993. – 256 с.

3. Установка для получения углеродных наноматериалов: патент 2839 Республика Беларусь, МПК В82В 3/00. / В.М. Волжанкин, А.В. Крауклис, С.А. Жданок, П.П. Самцов. № 20050647; заявл. 25.10.2005; опубл. 30.06.2006.

УДК 544.6.018.462

Н.А. Слесаренко¹, А.В. Черняк^{1,2}, А.А.Слесаренко¹, Г.Р.Баймуратова¹, К. Г.Хатмуллина¹, О.В.Ярмоленко¹ ¹ФИЦ проблем химической физик и медицинской химии РАН, г. Черноголовка, Россия ²Научный центр в Черноголовке Федерального государственного бюджет-

Научный центр в Черноголовке Федерального государственного бюджетного учреждения науки Института физики твердого тела имени Ю.А. Осипьяна РАН, г. Черноголовка, Россия

ИЗУЧЕНИЕ ВЛИЯНИЯ СТРУКТУРЫ НАНОКОМПОЗИТНОГО ПОЛИМЕРНОГО ЭЛЕКТРОЛИТА НА ИОННУЮ И МОЛЕКУЛЯРНУЮ ПОДВИЖНОСТЬ В СИСТЕМЕ ДАк-ПЭГ-LiBF4-EMIBF4-ЭК-SiO2 МЕТОДОМ ЯМР

В настоящее время нанокомпозитные полимерные электролиты (НПЭ) являются перспективным классом электролитов для полностью твердотельных литиевых и литий-ионных аккумуляторов [1]. Создание новых полимерных электролитов требует детального изучения структурно-динамических аспектов, в частности исследования механизмов ионного и молекулярного транспорта. Метод ЯМР является мощным инструментом для исследования электролитов как жидких, так и полимерных [2,3].

Структура полимерного электролита во много определяет его электрохимические свойства. Таким образом, целью данной работы было изучение методом ЯМР взаимодействия компонентов системы ДАк-ПЭГ – LiBF₄ – EMIBF₄ – ЭК – SiO₂, которые могут повлиять на электрохимические свойства электролита. Составы НПЭ приведены в таблице 1, где ДАк-ПЭГ – диакрилат полиэтиленгликоля, EMIBF₄ – 1-этил-3-метилимидазолия тетрафторборат, ЕС – этиленкарбонат, ПБ – перекись бензоила.

НПЭ	Содержание	ДАк-ПЭГ ₇₀₀	LiBF ₄	EMIBF ₄	EC	SiO ₂	ПБ
1	МОЛЬ	1	1	0	3		
1	масс%	64.2	8.6	0	24.2	2	1
2	МОЛЬ	1	1	2	3		
	масс%	46,7	6,3	26,4	17,6	2	1
3	МОЛЬ	1	1	4	3		
	масс%	37,6	5	40,2	14,2	2	1
4	МОЛЬ	1	1	6	3		
	масс%	30,2	4,1	51,3	11,4	2	1
5	моль	1	1	6	3		
	масс%	29	4	49	11	6	1

Таблица 1 – Составы НПЭ

Для подтверждения чистоты исследуемых составов (1-5) были зарегистрированы одномерные ЯМР спектры высокого разрешения на ядрах ¹H, ⁷Li, ¹³C, ¹⁹F и ¹¹B, а также двумерные ¹H-¹H COSY и ¹³C-1^H HSQC. Для расшифровки спектров полимерных электролитов были получены спектры (¹H, ¹³C, ¹⁹F и ¹¹B) чистой ионной жидкости EMIBF₄. Сигналы в спектрах ¹H полимерных электролитов значительно более широкие, чем в чистой EMIBF₄. Уширен также сигнал этиленкарбоната (~4 м.д.). Уширение сигналов вызвано формированием разветвленной, сетчатой полимерной структуры [4,5] сформированием ДАк-ПЭГ, которая значительно затрудняет хаотическое движение EMIBF₄ и EC. На спектре ¹H электролита можно увидеть очень широкий сигнал от -O-CH₂-CH₂-O- полимерной матрицы с максимумом ~3 м.д. Этот сигнал коррелирует с ¹³С сигналом при 69,2 м.д. на двумерном спектре ¹³C-¹H HSQC.

На рисунке 1 представлен двумерный спектр 2D DOSY, подтверждающий расшифровку сигналов, проведенную согласно одномерным ¹Н спектрам. Методом ЯМР с импульсным градиентом магнитного поля (ИГМП) были измерены коэффициенты самодиффузии (D_s) на ядрах ¹Н, ⁷Li, ¹⁹F. Диффузионные затухания на всех ядрах имели экспоненциальный характер. Измерения на ядрах ¹Н позволили определить парциальные коэффициенты самодиффузии D_s EMIBF₄ и EC. D_s на ядрах ⁷Li соответствует подвижности катионов лития, на ядрах ¹⁹F аниона BF₄⁻.

Рисунок 1 – ЯМР спектр 1H DOSY, состав 4

Результаты измерения D_s сведены в таблицы 2 и 3. Для сравнения представлены данные D_s для чистой EMIBF₄. Коэффициент самодиффузии D_s на ядрах ¹⁹F (подвижность BF₄⁻) ниже, чем на ядрах ¹H (подвижность EMI⁺). При нахождении аниона и катиона ионной жидкости EMIBF₄ в сетке полимерной матрицы коэффициент самодиффузии заметно ниже (в 3-3,5 раза). Как было показано ранее, замедление частиц ионной жидкости вызывает заметное уширение сигналов в ¹H ЯМР спектре.

	D _s комн, m²/s		E _a , kJ/mol		
	EC	EMIBF ₄	EC	EMIBF ₄	
1	3.99×10^{-12}	-	42,5	-	
2	8.52×10^{-12}	4.33×10^{-12}	36.1	37.2	
3	1.7×10^{-11}	9.99×10 ⁻¹²	30.0	29.9	
4	2.62×10^{-11}	1.62×10^{-11}	31.6	30.8	
5	2.7×10^{-11}	1.7×10^{-11}	29.2	28.3	
EMIBF ₄	5.15×10 ⁻¹¹		20.9		

Таблица 2 – Коэффициенты диффузии и энергии активации на ядрах ¹Н

Таблина	3 –	Коэd	ьфиниенты	лиффузии	и энергии	активании на	ялрах	¹⁹ Ги	$^{7}L^{i}$
I would de	•	11004	, with the train the second se	Andrey	in oneprint	with mondain ne			

	D _s комн, m ² /s ¹⁹ F	Ea, kJ/mol ¹⁹ F	D _s комн, m²/s ⁷ Li	Ēa, kJ/mol ⁷ Li
	LiBF ₄ + EMIBF ₄	LiBF ₄ + EMIBF ₄	LiBF ₄	LiBF4
1	1.42×10^{-12}	37.5	1.15×10^{-13}	51.6
2	3.41×10^{-12}	33.2	3.19×10^{-13}	44.5
3	6.85×10^{-12}	29.1	7.26×10^{-13}	42.6
4	1.24×10^{-11}	27.1	1.47×10^{-12}	37.1
5	1.30×10^{-11}	27.6	1.90×10^{-12}	35.8
EMIBF ₄	3.90×10^{-11}	27.0	-	-

По полученным данным в полимерных электролитах составов 1-5 катион Li⁺ имеет наименьший коэффициент диффузии D_s: D_s (EMI⁺) \approx D_s (BF₄⁻) >> D_s (Li⁺). Низкая подвижность обусловлена обра-

зованием сольватов катионов лития с молекулами этиленкарбоната. Увеличение добавки SiO_2 от 2 до 6 масс% (переход от состава 4 к составу 5) приводит к небольшому увеличению D_s катионов лития, что говорит о положительном вкладе наночастиц SiO_2 (Аэросил 380, $d\sim7$ нм) в подвижность катионов лития.

Получены температурные зависимости коэффициентов самодиффузии D_s на ядрах ¹H, ⁷Li, ¹⁹F в интервале от 20 до 60°C. Зависимости имели аррениусовский характер. Рассчитаны энергии активации диффузии (табл. 2-3). Показано, что энергия активации диффузии чистой ионной жидкости составляет ~20кДж/мол, а в составе полимерного электролита заметно больше: 28-37 кДж/мол. При увеличении содержания SiO₂ энергия активации диффузии ионной жидкости, а также молекул растворителя уменьшается от 32 до 28 кДж/мол.

Измерения выполнены с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН и Центра коллективного пользования НЦЧ ИФТТ РАН, г. Черноголовка. Работа выполнена по теме

Государственного задания.

Номер государственной регистрации 0089-2019-0010/АААА-А19-119071190044-3.

ЛИТЕРАТУРА

1. Yarmolenko, O.V. Nanocomposite polymer electrolytes for lithium power sources (review) / O.V. Yarmolenko, A.V. Yudina, K.G. Khatmullina // Russ. J. Electrochem. – 2018 – V. 54 – P. 325–343.

2. Volkov, V.I. Polymer electrolytes for lithium ion batteries studied by NMR techniques / V.I. Volkov, O.V. Yarmolenko, A.V. Chernyak, N.A. Slesarenko, I.A. Avilova, G.R. Baymuratova, A.V. Yudina // Membranes. – 2022 – V. 12 – A.416.

3. Chernyak, A.V. The effect of the solvate environment of lithium cations on the resistance of polymer electrolyte/electrode interface in solid-state lithium battery / A.V. Chernyak, N.A. Slesarenko, A.A. Slesarenko, G.R. Baymuratova, G.Z. Tulibaeva, A.V. Yudina, V.I. Volkov, A.F. Shestakov, O.V. Yarmolenko // Membranes. – 2022. – V. 12. – A. 1111.

4. Baymuratova, G.R. Specific features of Ion Transport in New Nanocomposite Gel Electrolytes Based on Cross-Linked Polymers and Silica Nanoparicles / G.R. Baymuratova, A.V. Chernyak, A.A. Slesarenko, G.Z. Tulibaeva, V.I. Volkov, O.V. Yarmolenko // Russian Journal of Electrochemistry. -2019 - V.55, No6 - P.529-536.

5. Chernyak, A.V. Influence of the reticular polymeric gelelectrolyte structure on ionic and molecular mobility of an electrolyte system salt-ionic liquid: LiBF₄-1-ethyl-3-methylimidazolium tetrafluoroborate / A.V. Chernyak, M.P. Berezin, N.A. Slesarenko, V.A. Zabrodin, V.I. Volkov, A.V. Yudina, N.I. Shuvalova, O.V. Yarmolenko // Russian Chemical Bulletin, International Edition. – 2016. – V. 65, № 8. – P. 2053-2058.