Постому представленные результаты с помощью интерполяции можно использовать и для анализа любых промежуточных исходных данных детали и основания.

С уменьшением параметра жесткости К относительпрогиб увеличивается, зависимость ω/d от $\ln K$ имеет линейный характер в интервале іп К от 0,5 до —3. При допустимом прогибе в центре детали 0,25 · 10-6 м (одно интерференционное кольцо) относительный прогиб равен $2 \cdot 10^{-5}$, что соответствует значению $K \le 0.01$. Для рассмотренной детали полимерный слой может обладать малой жесткостью, т. е. иметь модуль упругости $E \approx 1$ МПа и $\mu_0 = 0.42$ при его толщине $H = 3 \cdot 10^{-5}$ м.

ЛИТЕРАТУРА

1. Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки.— М., 1966.— 635 с. 2. Коваленко А. Д. Круглые пластины переменной толщины.—

M., 1959.— 294 c.

3. Мартыненко М. Д., Ильинкова Н. И. Изгиб свободно опертой пластинки переменной толщины с начальной кривизной срединной поверхности // Теорет. и прикл. механика. — Минск, 1983. — Вып. 10. — C. 35-41.

4. Крючков А. А. Исследование изгиба круглых цилиндрических ортотропных пластин вариационно-разностным методом // Строит. ме-

ханика и строит. конструкции.— Минск, 1980.— Вып. 6.— С. 57—66. 5. Горбунов-Посадов М. И., Маликова Т., Соломин В. И. Расчет конструкций на упругом основании.— М., 1984.— 679 с.

УДК 678.742:674.817

В. В. Яценко, М. М. Ревяко, Т. А. Николаева, Я. М. Паушкин, Е. Г. Горлов

РЕГУЛИРОВАНИЕ ПРОЦЕССА СШИВАНИЯ И СВОИСТВ ПОЛИЭТИЛЕНА ВВЕДЕНИЕМ ОРГАНИЧЕСКИХ НАПОЛНИТЕЛЕЙ

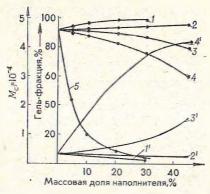
Использование полиэтилена в качестве конструкционного материала ограничено его низкой теплостойкостью. Повышение теплостойкости полиэтилена и композиционных материалов на его основе является из актуальных задач материаловедения полимеров.

Для увеличения теплостойкости полиэтилена можно использовать его структурную химическую модификацию

в сочетании с наполнением.

В исследовании, выполненном с этой целью, наполнителями были древесная мука, мелкодисперсная угольпая пыль (размеры частиц — менее 100 мкм) и прибалтийский сланец в виде керогена-70 и керогена-90. Угольпля пыль готовилась из каменного угля Г-6 Грамотеинского разрева Кузбасса. Петрографический состав угляпитрипит — 83%, семивитринит — 2, фюзинит — 2, микстинит — 1, лейптинит — 10%; зольность — 7.0%; илижность — 1.8%. Сланцы и угли являются дешешыми органо-минеральными наполнителями пластмасс, гидрофобны, стойки к действию кислот, щелочей и ряда органических растворителей [1, 2]. Указанные вещества по своему воздействию на полиэтилен сравнивались с традиционным наполнителем пластмасс — древесной мукой. Удельная поверхность древесной муки, определенная методом низкотемпературной адсорбции аргона, равна 24,2 м²/г, угля, керогена-70, керогена-70 высокодисперсного и керогена-90 — 1,9; 6,3; 15,8; 10,4 м²/г соответственно. Выбор наполнителя был обусловлен тем, что органические наполнители должны лучше, чем минеральные, совмещаться с полимером, а, кроме того, коэффициенты термического расширения полимера и органических наполнителей более близки, чем полимера и минеральных наполнителей [3].

Объектом исследования был полиэтилен высокой плотности марки 20906-040 (ГОСТ 16338-70). Смешение полимера с наполнителем осуществлялось в течение 10 мин при температуре 418 К. Модификация структуры полимера проводилась сшиванием макромолекул пероксидом дикумила. Введение последнего в наполненный полимер в количестве 2,5% от массы полимера осуществлялось вальцеванием при 418 К в течение 1 мин. При таком режиме вальцевания достигается распределение пероксида дикумила в полимере и исключается преждевременная подшивка полимера. О качестве вальцовок судили по коэффициенту разброса полученных значений прочности при разрыве и степени сшивания полимера.


Образцы для исследований изготавливались в условиях, обеспечивающих полноту протекания процесса спивания непосредственно при формировании, а именно: температура прессования составляла 448 K, время выдержки — 10 мин.

Влияние наполнителей на процесс структурирования полнотилена оценивалось по экспериментальным значениям степени равновесного набухания и рассчитанной на основании теории высокоэластичности по уравнению

Флори — Ренера молекулярной массе отрезка цепи меж-

ду двумя узлами полимерной сетки M_c [4—5].

Сопоставление данных степени равновесного набухаши и величины гель-фракции в наполненном полиэтилепе, определенной при кипячении в *п*-ксилоле в течение 2,5·10⁴ с (см. рисунок) свидетельствует о существенном илиянии природы органических наполнителей на процесс структурирования полиэтилена.

Зависимость гель-фракции и M_c в наполненном структурированном полиэтилене высокой плотности от массовой доли наполнителя:

I—5—гель фракция; I'—4'— $M_{\rm C}$; I, I'— древесная мука; 2, 2'—дисперсный уголь; 3, 3'—кероген-70В; 4, 4'—кероген-90

При введении в качестве наполнителя дисперсного угля или древесной муки кажущаяся густота трехмерной полимерной сетки не уменьшается, что в условиях наполненной системы является доказательством наличия большого числа прочных, не разрушающихся при набухании связей между полимером и наполнителем.

Другой характер зависимости был получен для образцов, содержащих кероген. Введение его в полиэтилен приводит к уменьшению степени сшивания полиэтилена. Наибольший эффект снижения степени сшивания полиэтилена наблюдается в присутствии керогена-90. По нашему мнению, это обусловлено наличием на поверхности керогена-90 большого количества карбоксильных и карбонильных групп, а также гидроксильных групп фенолов, инициирующих ионный распад пероксида дикумила.

1 ин ванолнителя	Массовая доля напол- нителя, %	Теплостой- кость по мето- ду Вика, К	E _а процесса разложения, кДж/моль	Температура 20%-ных потерь массы, К
Кероген-70 Кероген-90 Древесная мука Древесный уголь	0 5—45 5—45	333 343—384 348—388	31,5 32,0—45,0 23,0—37,5	703 703—723 683—713
	5—45 5—45	343—403 368—393	36,6—15,7 35,0—27,7	691—638 693—698
	5—45	368—393	35,0—27,7	693—698

Поэтому осуществление процесса сшивания возможно лишь при устранении негативного влияния этих функциональных групп. Эффект структурирования полиэтилена, наполненного керогеном-90, был достигнут при введении оксида цинка, способного нейтрализовывать кислоты и связывать гидроксилы фенолов с образованием фенолятов. Установлено, что оптимальное содержание оксида цинка составляет 1,5%. В этом случае на гельфракцию приходится 86,8% при 45%-ном содержании керогена-90.

Созданные на основании проведенных исследований композиционные материалы имеют хорошие физико-химические свойства, на 20-70% превышающие эти показатели для исходного полиэтилена. Кроме того, модификация позволила получить значительные показатели теплостойкости (метод Вика, сила — $49~\rm H$) и термостабильности созданных материалов. Термостабильность характеризуется рассчитанной по данным термогравиметрии эпергией активации разложения E_a и температурой

20%-ных потерь массы (см. таблицу).

Таким образом, исследования показали перспективпость проведенного комплексного типа модификации полиэтилена для создания композиционных полимерных материалов с улучшенными физико-механическими свой-

ствами и повышенной теплостойкостью.

ЛИТЕРАТУРА

1. Губергриц М. Я. Спектры электронного парамагнитного ре-полител в прибалтийских горючих сланцах // Докл. АН СССР —

1001 - T. 136, № 4. C. 824-826.

2. Горлов Е. Г., Зуммеров С. Р., Паушкин Я. М. Разработка и применение композитных материалов угля с высокомолекулярными гоединениями (состав, свойства и области применения) // Химия тверд. топлина.— 1977.— № 1.— С. 3—16.

3. Липатов Ю. С. Физико-химия наполненных полимеров — М.,

1986.— 436 с. 4. Усиление эластомеров / Под ред. Крауса.— М., 1968.— 484 с. 5. Губергриц М. Я. Горючие сланцы Эстонии // Природа.— 1966.— No 7,- C. 94-97.

NUK 621.791.353

И. И. Бортников, П. Г. Храмцов, В. В. Эктов, Н. П. Матвейкопроизводство микробной биомассы на основе электролитического водорода

Увеличение производства микробного белка в настоящее время сдерживается ограниченностью и большой стоимостью традиционных сырьевых ресурсов растительного происхождения — отходов деревообрабатывающей промышленности, сельскохозяйственного производства, а также продуктов переработки нефти — парафинов. В связи с этим большое внимание уделяется поиску нового, экономически рентабельного сырья, позволяющего наладить крупнотоннажное производство микробной массы. Особый интерес в этом плане представляет водород.

Как показали исследования [1], биомасса водородных бактерий по своим пищевым качествам и аминокислотному составу значительно превосходит гидролизные и углеводородные дрожжи и не содержит канцерогенных соединений [2]. Однако организация крупнотоннажного производства биомассы неэффективна вследствие высокой стоимости основного сырья — водорода. Предварительные расчеты показали, что себестоимость 1 т биомассы из водорода зависит от многих технико-экономических факторов, прежде всего от наличия экономически рентабельного сырья — водорода, высокопроизводительного оборудования, совершенного технологического процесса. Например, при осуществлении ферментации при атмосферном давлении себестоимость 1 т микробной массы составляет около 1310 руб. Осуществление этого