мов путем их совместного разложения с исходным фосфатным сырьем и последующей переработкой пульпы на экстракционную фосфорную кислоту.

ЛИТЕРАТУРА

1. Наркевич И. П., Печковский В. В., Плышевский С. В. и др. Использование шламов станции нейтрализации сточных вод для производства сложно-смешанных удобрений // Хим. пром-сть. — 1984. — № 1. — C. 32.

2. Методы анализа фосфатного сырья, фосфатных и комплекс-

ных удобрений, кормовых фосфатов. — М., 1975. — 132 с.

3. Вассерман И. М. Химическое осаждение из раствора. — Л., 1980. - 208 c.

4. Переработка фосфоритов Каратау / Под ред. М. Е. Позина. —

Л., 1975. — 180 с.

5. Зинюк Р. Ю., Копылев Б. А., Позин М. Е. О взаимодействии фтора в системах, образующихся при переработке фосфатов в удобрения // Хим. пром-сть.— 1967.— № 1.— С. 37.

6. Коновалова С. Л. Исследование превращений фтористых соединений в фосфорнокислых растворах: Автореф. ... канд. хим. наук. — Л., 1970. — 22 с.

УДК 541.13:669.245'27

С. А. Юрчик, В. И. Сонин, И. М. Жарский

исследование процесса электрохимического ОСАЖДЕНИЯ СПЛАВА НИКЕЛЬ—ВОЛЬФРАМ

Использование для гальванических покрытий сплавов вольфрама с металлами группы железа позволяет в широких пределах изменять такие свойства покрытий, как жаропрочность, износостойкость, устойчивость к элек-

тронной бомбардировке и т. д. [1].

Для осаждения сплава никель — вольфрам няются обычно электролиты, содержащие сульфат никеля, вольфрамат натрия, комплексообразователь (сегнетова соль, цитрат натрия, борная кислота, винная кислота и др.) и добавки (аммиак, хлорид аммония, сульфат аммония и др.), которые значительно повышают выход сплава по току (ВТ) [1-6]. В качестве анодов обычно используют вольфрам, поскольку никель при плотности тока выше 30 А/м2 пассивируется [2].

Наиболее полно процесс осаждения сплава никель вольфрам из виннокислого электролита исследован авторами работы [6]. Методом планирования эксперимента при температуре T = 348 K, катодной плотности тока $i_{\rm K}$, равной 500 A/м², они получили уравнения регрессии для выхода по току сплава, содержания вольфрама в сплаве, выхода по току вольфрама в зависимости от концентрации винной кислоты, вольфрамата натрия, сульфата аммония и сульфата никеля. Установлено, что решающее влияние на весь процесс сплавообразования оказывает концентрация металла-соосадителя, причем опти-

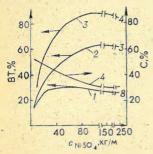


Рис. 1. Зависимость выхода по току вольфрама (1), никеля (2), сплава (3), содержания С вольфрама в сплаве (4) от концентрации NISO4.

Состав электролита, кг/м 3 : Na₂WO₄ · 2H₂O-200; (NH₄)₂SO₄-37.5; винная кислота-104.6; $T_{3.7}$ =348 K; $i_{\text{K}}=500 \text{ A/M}^2$; pH 3,5

мальной концентрацией c NiSO₄ (рис. 1) признана концентрация, равная 60—100 кг/м³ [6].

Нами изучено влияние температуры, плотности тока, концентрации NiSO₄ и Na₂WO₄ на процесс осаждения сплава никель — вольфрам при оптимальных концентрациях $(NH_4)_2SO_4$ $(37,5)^2$ кг/м³) и винной кислоты (104) кг/м3) [6]. Поскольку число переменных факторов равно 4, был выбран план Бокса [7], данные к которому

приведены в табл. 1.

Исходный электролит готовили следующим образом. Каждый компонент электролита (марки «хч») растворяли в дистиллированной воде и сливали в следующем порядке: к раствору винной кислоты добавляли раствор сульфата аммония, затем тонкой струей при перемешивании — раствор вольфрамата натрия и в последнюю очередь также при перемешивании — сульфат Полученный раствор отстаивали до исчезновения пены и разбавляли водой до расчетного объема. В каждом из опытов использовали свежеприготовленный электролит.

Электрохимическое осаждение сплава Ni-W проводили на медную и вольфрамовую основу. Медь перед нанесением покрытия подвергали обезжириванию содовым раствором и ацетоном, глянцевому травлению в смеси азотной и серной кислот (5·10-4 м3 HNO3, плотность

Уровни изучаемых факторов	$i_{\rm K}$, $\times 10^2 {\rm A/M}^2$	<i>Т</i> _{вл} , К	CNISO ₄ .7H ₂ O, Kr/m ³	c _{Na,WO₄} , kr/м³
	X 1	X 2	X 3	X 4
Основной	10	328	80	150
Верхний	15	348	100	200
Нижний	5	308.	60	100

 $\rho = 1,38 \cdot 10^3$ кг/м³, $5 \cdot 10^{-4}$ м³ $H_2 SO_4$, $\rho = 1,84 \cdot 10^3$ кг/м³) и активированию в растворе серной кислоты (30 кг/м³), вольфрам — обезжириванию содовым раствором и ацетоном.

Для определения выхода по току сплава катоды взвешивали до и после опыта. Время электролиза устанавливали таким образом, чтобы на каждое осаждение сплава расходовалось одинаковое количество электричества. Аноды — вольфрамовые, во всех опытах анодная плотность тока составляла 200 А/м².

Для определения состава сплава покрытие растворяли в царской водке при 353—363 K, после чего концентрацию Ni+2 определяли трилонометрически в присутствии мурексида. Титр трилона Б находили титрованием раствора, содержащего известные навески NaWO4 и NiSO4. Поляризационные кривые снимали гальваностатическим методом с использованием потенциостата П-5827М. Электрохимическую ячейку термостатировали с помощью термостата U-2, точность поддержания температуры $\pm 0,2$ K. Потенциал рабочего электрода определяли относительно хлорсеребряного электрода сравнения.

Перед снятием поляризационных кривых рабочий электрод покрывали сплавом Ni—W в соответствующем электролите и при соответствующей температуре в течение 1 ч.

В результате реализации плана Бокса получено 24 средних построчных значения ВТ сплава \overline{Y} и содержания (%) вольфрама в сплаве \overline{Y}_2 (табл. 2).

Расчет коэффициентов уравнений регрессии для ВТ сълава и содержания W в сплаве проводился по уравнениям, рекомендованным в работе [7]. Затем проверялась

аничимость каждого коэффициента [7, 8]. Отбросив не-

а) уравнение регрессии для ВТ сплава:

$$Y_1 = 0.622 + 0.01X_2 + 0.0079X_2 + 0.314X_4 - 0.149X_4^2$$
;

б) уравнение регрессии для содержания W в сплаве:

$$\hat{Y}_2 = 24,5023 + 1,0777X_1 - 1,55X_3 + 8,9166X_4 + 0,348X_1^2 + 0,348X_2^2 + 0,398X_3^2 + 0,598X_4^2.$$

Вычисленные по этим уравнениям значения ВТ сплава и содержания W в сплаве приведены также в табл. 2. Оба уравнения регрессии адекватно описывают поверхность отклика.

Реализация плана Бокса

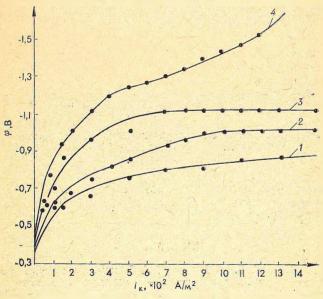
Полученные экспериментальные результаты, а также

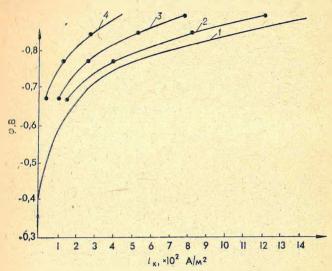
Таблица 2

Реализация плана докса									
№ опы-	Xı	X2	X ₃	X ₄	\overline{Y}_t	Y.	\overline{Y}_2	\hat{Y}_{z}	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 1 -1 1 -1 1 -1 1 -1 1 -1 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,814 0,812 0,791 0,782 0,796 0,790 0,772 0,184 0,165 0,163 0,164 0,167 0,163 0,638 0,613 0,613 0,612 0,623 0,613 0,612	0,8049 0,8049 0,7849 0,7849 0,7891 0,7691 0,7691 0,1769 0,1569 0,1569 0,1611 0,1411 0,4411 0,6220 0,6220 0,6320 0,6120 0,6120 0,6299 0,6141 0,7870 0,1590	35,1 32,6 34,8 37,9 35,7 37,8 35,5 16,4 14,7 11,7 25,9 23,8 24,9 24,8 23,4 33,1 17,1	34,638 32,483 34,638 32,483 37,738 35,583 37,738 35,583 16,805 14,650 19,905 17,750 19,900 17,750 25,928 23,772 24,850 24,850 24,850 24,850 24,850 24,850 24,850 26,450 34,010 16,180	

анализ уравнений регрессии позволяют сделать вывод, что в интервале концентраций NiSO₄·7H₂O от 60 до 100 кг/м³ решающее влияние на ВТ сплава и содержание W в сплаве оказывает концентрация вольфрамата натрия. С увеличением концентрации сульфата никеля содержание W в сплаве уменьшается, а ВТ сплава увеличивается, что подтверждает данные работы [6]. Повышение температуры крайне незначительно влияет на состав сплава, но способствует увеличению выхода сплава по току и, кроме того, сопровождается резким улучшением внешнего вида покрытия. Например, в опытах 1—8 покрытие, полученное при 348 K, было белым, мелкозернистым и блестящим, а при 308 К—серым, матовым и крупнозернистым.

Повышение плотности тока незначительно влияет на выход сплава по току, но приводит к обогащению спла-




Рис. 2. Поляризационные кривые катодного осаждения сплава Ni—W совместно с процессом выделения водорода:

1, 3—состав электролита, кг/м³: NiSO₄ · 7H₂O—100; NaWO₄ · 2H₂O—200; винная кислота—104,6; (NH₄)₂SO₄—37,5; 2, 4—состав электролита, кг/м³: NiSO₄ · 7H₂O—60; Na₂WO₄ · 2H₂O—200; винная кислота—104,6; (NH₄)₂SO₄—37,5; 1, 2—T_{ЭЛ}=348 K; 3, 4—308 K. Электрод сравнения—хлорсеребряный

ви польфримом, что также согласуется с ранее получен-

ными данными 12, 31.

Па рис. 2 приведены катодные поляризационные криные для различных электролитов и температур. Исходя из нах были вычислены парциальные поляризационные кривые катодного осаждения никеля и вольфрама [9] (рис. 3). Сравнительный анализ этих кривых позволяет

сделать вывод, что катодная поляризация растет с уменьшением концентрации сульфата никеля и понижением температуры.

ЛИТЕРАТУРА

1. Соколова Г. Я., Рябухина А. Г. Влияние некоторых фактов ин электрохимическое получение Ni—W покрытий из водных аммилиных электролитов // Тр. Курган, машиностр. ин-та. — 1971. — Вын. 17. — С. 14—21.

2. Электролитическое осаждение сплавов: Сб. ст. — М., 1961. —

216

3. Васько Л. Т. Изучение поляризации при электроосаждении польфрами соиместно с никелем // Коррозия и защита металлов. — Спол. 1072. — С. 92—98.

I. Пистко А. Т., Косенко В. А., Зайченко В. Н. О механизме

электроосаждения Мо с металлами семейства железа // Тр. I Укр.

респ. конф. по электрохимии. — Киев, 1973. — Ч. 1. — С. 238—246. 5. Грязнова Г. И., Котов В. Л., Кривцов А. К. Особенности получения тугоплавких покрытий с высоким содержанием вольфрама // Тез. докл. совещ. «Совершенствование технологии гальванических покрытий». — Киров, 1980. — С. 232.

6. Тоболич В. В., Васько А. Т. Исследование электроосаждения Ni—W сплавов методом планирования эксперимента // Тр. I Укр. респ. конф. по электрохимии.— Киев, 1973.— Ч. 1.— С. 246—253.
7. Пен Р. З., Менгер Э. М. Статистические методы в целлюлоз-

но-бумажном производстве.— М., 1973.— 119 с. 8. Ахназарова С. Л., Кафаров В. В. Оптимизация эксперимента в химии и химической технологии.— М., 1978.— 319 с. 9. Прикладная электрохимия / Под ред. А. Т. Кудрявцева.— М., 1975.-- 553 c.

УДК 631.83

Н. П. Крутько, Е. В. Воробьева, Н. А. Акулич

ВЛИЯНИЕ ПОЛИКОМПЛЕКСА ПОЛИМЕТАКРИЛОВАЯ КИСЛОТА — МОЧЕВИНОФОРМАЛЬДЕГИДНАЯ СМОЛА—МЕДЬ НА СВОЙСТВА ХЛОРИСТОГО КАЛИЯ

Одним из путей улучшения физико-механических свойств калийных удобрений является гранулирование мелкозернистого хлористого калия с помощью различных связующих добавок, в частности полимерных веществ. Однако при этом новый класс полимерных материалов — поликомплексы, получаемые при взаимодейпротивоположно заряженных макромолекул полимерных элетролитов, пока широко не используются, так как сведения о влиянии полимер-полимерных комплексов на свойства удобрений и их поведение в солевой среде весьма ограничены.

С целью создания научных основ использования поликомплексов в качестве связующих добавок для удобрений было исследовано влияние полимерного комплекса, образованного полиметакриловой кислотой (ПМАК). мочевиноформальдегидной смолой (МФС) и сернокислой медью (CuSO₄·5H₂O), на физико-механические свойства (прочность, степень растворения, гигроскопич-

ность) хлористого калия.

Прочность гранул определяли по ГОСТу 215 602-76, степень растворения — по методике, изложенной в работе [1]. Из таблицы следует, что совместное действие смеси ПМАК и МФС значительно эффективнее, чем