Т.В. Латушко*, Е.В. Барковский*, В.Г. Цыганков

РОЛЬ ВНЕКЛЕТОЧНЫХ ИОНОВ КАЛЬЦИЯ В ЦИТОТОКСИЧЕСКОМ ДЕЙСТВИИ АЦЕТАТА СВИНЦА.

При исследовании механизмов действия соединений тяжелых металлов, в том числе и свинца, на клеточном уровне вопрос об индукторе-регуляторе, который запускает всю цепь биохимических событий, приводящих к цитотоксическому эффекту, является одним из ключевых.

В настоящее время имеются многочисленные данные, свидетельствующие о том, что для различных типов клеток основным в механизме действия физиологически активных веществ и ксенобиотиков является активация транспорта в клетку ионов Ca^{2+} [3, 4, 8].

Известно, что внутриклеточная концентрация кальция составляет $10^{-7} - 10^{-6}$ М, во внеклеточной жидкости содержится 10^{-3} М кальция [2]. Такой большой градиент концентрации, направленный внутрь клетки, а также отрицательный заряд клетки создают условия для пассивного поступления ионов кальция внутрь клетки. Несмотря на это, поступление ионов кальция в клетки при отсутствии действия стимулирующих факторов довольно незначительно, следовательно, плазматическая мембрана относительно непроницаема для кальция, благодаря чему многие клетки малочувствительны к изменениям концентрации кальция в окружающей среде [5].

Нарушение проницаемости клеточных мембран сопровождается усиленным пропикновением ионов кальция внутрь клеток. Ионы кальция биологически очень активны, способны вызывать глубокие изменения внутриклеточного метаболизма и приводить в конечном итоге к появлению некротических очагов в тканях и гибели клетки [8].

В исследованиях с эритроцитами показано, что ионы свинца изменяют проницаемость мембран, блокируют активные центры-насосы [12]. Помимо этого, ионы свинца связываются с сульфгидрильными, фосфатными и карбоксильными группами мембран, увеличивают их жесткость и снижают устойчивость к осмотическому шоку [7].

Согласно современной концепции об общем конечном пути гибели клеток при воздействии различных цитотоксических агентов в результате повреждения клеточных мембран, изменения их проницаемости и значительного поступления ионов ${\rm Ca}^{2+}$ внутрь клеток, что приводит к ряду биохимических изменений в клетках, в том числе, разрушению цитоскелета,

^{*} Минский государственный медицинский институт

фрагментации ДНК, Ca^{2+} – зависимой активации фосфолипаз, протеаз и эндопуклеаз [9], и в конечном итоге индуцирует гибель клеток [10].

Однако в литературе имеются данные и о защитном действии ионов Ca^{2+} при отравлении свинцом. Так, увеличение кальция и фосфора в рационе цыплят оказывает защитное действие при свинцовой интоксикации [1]. Нервно-мышечная блокада, вызываемая соединениями свинца, снимается ионами Ca^{2+} (11). Эффект влияния ионов Pb^{2+} на синаптическую передачу в периферической нервной системе также нивелируется ионами Ca^{2+} [6].

Сведений о роли трансмембранных потоков ионов кальция в токсическом действии ацетата свинца на иммунокомпетентные клетки нами в литературе не обнаружено. Поэтому, возник естественный вопрос о характере влияния ацетата свинца на интенсивность макромолекулярных биосинтетических процессов в спленоцитах крыс, культивируемых в бескальциевой среде. Поскольку не исключено, что нарушение кальциевого гомеостаза спленоцитов играет определенную роль в проявлении токсического действия ионов свинца на клеточном и субклеточном уровнях, и приводит в конечном счете к токсической гибели клеток.

Исследования проводились на крысах самцах линии Wistar массой 180 — 220 г, содержащихся на обычном рационе вивария. Экспериментальной моделью явилась клеточная популяция свежеизолированных нефракционированных спленоцитов, которую получали мягкой гомогенизацией селезенки в среде 199 и фильтрацией через нейлон. В культуры спленоцитов (5*106 клеток/мл) вносили ацетат свинца до конечной концентрации 10 мкМ и культивировали в стандартных флаконах при температуре 37°C в кальциевой (199) и бескальциевой (Joklik) средах. Жизнеспособность спленоцитов оценивали по тесту исключения живыми клетками красителя трипанового синего. Синтез ДНК оценивали по количеству радиоактивного ³Н-тимидина (5 – 10 мкКи/мл культуры клеток), включенного в ДНК спленоцитов. Синтез РНК оценивали по количеству радиоактивного ³Н—уридина, включенного в РНК спленоцитов. Реакцию останавливали через 3, 4, 5 и 10 часов. Во всех экспериментах после окончания культивирования клетки обрабатывали 10% трихлоруксусной кислотой. Нерастворимую фракцию переносили на мембранные фильтры и определяли радиоактивность фильтров в диоксановом сцинтилляторе на жидкостном сцинтилляционном счетчике "Весктал" (США).

Количественные данные о включении радиоактивных предшественников в ДНК и РНК спленоцитов представляют собой среднее арифметическое измерений в 4—6 параплельных культурах и выражены в импульсах в минуту на 5 млн. клеток. Жизнеспособность спленоцитов, оцениваемая в начале и в конце каждого эксперимента составляла более 90%.

Таблица 1 Включение 3 Н-тимидина в ДНК интактных и ${\rm Pb}^{2^{+}}-$ обработанных (10 мКи спленоцитов крыс, культивируемых в кальциевой и бескальциевой средах

Условия	Время культивирования				
Культивирования	3 часа	4 часа	5 часа	10 часов	
Кальциевая среда					
Контроль	13258±407	22327±446	27057±1199	35347±562**	
Клетки + Pb(CH ₃ COO) ₂ 10 мкМ	17624±312*	33667±5726	25262±1841	34502±2548**	
Бескальциевая среда					
Контроль	14542±316	19747±1804	26097±5616	25753+667	
Клетки + Pb(CH ₃ COO) ₂ 10 мкМ	16067±1689	18381±2650	37472±8884°	27192±1270	

Здесь и далее изменения достоверны по отношению к контролю (P < 0.05)
Здесь и далее изменения достоверны по отношению к 5-ому часу (P < 0.05)

Таблица 2 Включение 3 Н—уридина в РНК интактных и $\mathrm{Pb}^{2^{+}}$ — обработанных (10 мКи) спленоцитов крыс, культивируемых в кальциевой и бескальциевой средах

Условия	Время культивирования				
Культивирования	3 часа	4 часа	5 часа	10 часов	
Кальциевая среда					
Контроль	18086 ± 905	19253 ± 651	28312 ± 3728	36803 ± 2547*	
Клетки +	17564 ± 558	23369± 1307*	30363 ± 1191	39369 ± 2264*	
Pb(CH ₃ COO) ₂ 10 mkM					
Бескальциевая среда					
Контроль	15912 ± 1506	16353 ± 1120	17592± 436	18212 ± 1509	
Клетки +	17852 ± 833	19067 ± 508	25959 ± 909*	21040 ± 1596°	
Pb(CH ₃ COO) ₂ 10 мкМ					

Полученные данные по включению 3 Н-тимидина в ДНК и 3 Н-уридина в РНК интактных и Pb^{2+} - обработанных спленоцитов, культивируемых в кальцисвой (среда 199) и бескальцисвой (среда Joklik) средах, представлены в таблицах 1 и 2 соответственно.

При анализс полученных данных о влиянии дефицита внеклеточного кальция на проявление цитотоксического эффекта ацетата свинца на спленоциты крыс сделаны следующие выводы.

Наличие стадии повышенного включения 3 H-тимидина и 3 H- уридина в ДНК и РНК $^{2^{+}}$ - обработанных спленоцитов как в кальциевой, так и бескальциевой средах свидетельствуют о

том, что трансмембранные потоки ионов Ca^{2+} не играют существенной роли в возникновении этого эффекта. При рассмотрении кинетики включения радиоактивных предшественников в ДНК и РНК спленоцитов с 5-ого по 10-ый час культивирования клеток обращает на себя внимание тот факт, что при наличии кальция в среде культивирования наблюдается достоверное увеличение включения радиоактивных меток в ДНК и РНК как интактных, так и Pb^{2+} - обработанных спленоцитов. Удаление же Ca^{2+} из культуральной среды нивелирует этот эффект в случае с ДНК, а в случае с РНК даже приводит к достоверному уменьшению включения 3 Н- уридина в РПК и Pb^{2+} - обработанных спленоцитов.

Результаты этих исследований однозначно позволяют отвергнуть теорию общего конечного Ca²⁺ - индуцированного пути гибели клеток при воздействии ацетата свинца. Более того, полученные нами данные исследований цитотоксического действия ацетата свинца на спленоциты, культивируемые в кальциевой и бескальциевой средах, свидетельствуют о защитной роли внеклеточных ионов Ca²⁺ при воздействии ацетата свинца на макромолекулярные биосинтетические процессы в иммунокомпетентных клетках.

Литература

- 1. Андрушайте Р.Е. Взаимодействие свинца и Са-Р-обмена и витамина Д // Регуляция фосфор-кальциевого обмена в норме и патологии / Рига,— 1987.— С.53-65.
- 2. Голиков С.Н., Саноцкий И.В., Титунов Л.А. Общие механизмы токсического действия. М.: Медицина. 1986. 276 с.
- Костенко М.Н. Ионная регуляция дифференцировки и регенерации нейронов в культуре // Успехи соврем. биологии. 1980. т. 90, №2(5). т. С.201-235.
- 4. Трахтенберг И.М., Иванов Л.А. Современные представления о воздействии ртути на клеточные мембраны // Гиг. и сан. 1984. №5. С.59—63.
- Федоров Н.А. Биологическое и клиническое значение циклических нуклеотидов. М.: Медицина. – 1979. – 183 с.
- Kostial K., Vouk V.B. Lead ions and synaptic transmission in the superior cervical ganglion of the cat//Brit.J.Pharmacol.-1987.-N12.-P.219-220.
- Lessler M.A., Walrers M.J. Erythrocyte osmotic fragility in the presence of Pb or Hg // Proc.Soc.exp.Biol. Med.-1973.- Vol.142.- P.548-553.
- Lowrey K., Glende E., Recknagel R. Rapid depression of rat liver microsomal calcium pump activity after administration of carbon tetrachloride or bromtrichloromethane and lack of effect after ethanol // Toxicol. a. Appe. Pharmacol.-1981.-Vol.59, №2 - P.389-394.

- Nicotera P., McConkey D.J., Dypbuckt J.M. Ca²⁺ activated mechanisms in cell killing // Drug. Metab. Rev.–1989.–Vol.20, №24.– P.193–201.
- 10. Orrenins S., McConkey D.J., Belomo G. Role of Ca²⁺ in toxic cell killing // Trends Pharmacol. Sci. 1989. Vol.10, №7. P.185–281.
- Silbergeld E.K., Fales J.T., Goldberg A.M. Evidence for a functional effect of lead on neuromuscular function // Nature (Lond). 1974. Vol. 247. P. 49–50.
- Venugopal B., Luckey T.D. Metal toxicity in mammals // New York: Plenum press.
 – 1978.– Vol.2.– 409p.

УДК 615.778.4-009:361.9:004.65]:66.069

Г.В. Лисовская, А.С. Соколов

К ВОПРОСУ РЕГЛАМЕНТИРОВАНИЯ БЕНЗОЛА И ТОЛУОЛА В ПИТЬЕВОЙ ВОДЕ НА ПЕРИОД ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Возникновение кризисных эколого-токсикологических ситуаций, связанных с авариями на химических объектах, ставит задачи по разработке действующих программ, включающих комплекс организационных мероприятий, нацеленных на обеспечение выживаемости людей в условиях внезапных воздействий аварийно опасных химических соединений (АОХС) (1, 2).

Определяющим фактором, характеризующим чрезвычайные ситуации, связанные с аварийно опасными химическими веществами, является превышение допустимых уровней содержания токсикантов в средах (воздух, вода) на несколько порядков. В связи с этим лимитируются сроки пребывания в опасной зоне (до 10 суток) [5].

Экспериментальные токсикологические исследования по разработке аварийных регламентов, направленных на снижение риска неблагоприятных последствий для лиц, находящихся в зоне химических аварий, представляются актуальными и целесообразными. Это касается и изысканий, направленных на изучение возможности использования воды, содержащей АОХС для питьевых целей.

Базовым нормативом для разработки мероприятий по защите населения в условиях чрезвычайных ситуаций является определяемая в соответствии с требованиями методических указаний [5] максимально допустимая концентрация (МДК _{чр.сит.}) - временная максимально допустимая концентрация содержания аварийно опасного химического соединения в питьевой воде,