Educational Establishment Belarusian State Technological University

«APPROVED»

Vice Rector for Academic Work _____S. A. Kasperovich «___» ____2013

CHEMISTRY OF COMPLEX COMPOUNDS

Syllabus (Translation from Russion)

Speciality

1-48 01 02 - Chemical Technology of Organic Substances, Materials and Products;

1-48 01 05 – Chemistry technology of wood processing;

1-48 02 01 – Biotechnology;

1-48 02 02 – Technology of medicines;

1-57 01 03 - Bioecology

Faculty Chemical Technology and Engineering

Department General and Inorganic Chemistry

Year _____2____

Semester _____3____

Lectures $-\underline{26}$ (academic hours) Laboratory classes $-\underline{8}$ (academic hours) Total academic hours (classwork): -34 Credit <u>3</u> (semester)

Form of getting

Attendance full-time

Total academic hours -50

The syllabus is based on the Standard Syllabus for Higher Educational Institutions « Chemistry of complex compounds» approved 1.12.2008, registration number TД-1.094/тип.

Reviewed and recommended for approval at the meeting of the Department of General and Inorganic Chemistry, educational institution «Belarusian State Technological University»

Minutes No 7 from 29.02.2013 Head of department

I.E.Malashonok

Author

_____ V Ashuyko

EXPLANATORY NOTE

1.1. Goals and Objectives of Teaching and Learning of the subject

Goal:

- to teach would-be chemical industrial engineer to comprehend the chemistry of complex compounds essence correctly.

Objectives:

- to create the students' understanding of the complex compounds structure on the basis of the up-to-date theory of chemical bond;
- to study the complex compounds classification and nomenclature;

to study the chemistry of complex compounds, their conduct in solutions and in various interacting;

- to form students' understanding about fields of applications of complex compounds.

1.2. Demands to the level of mastering the subject

Students mast have knowledge about classification, nomenclature and structure of complex compounds. Chemical properties of complex compounds which depend on structure and fields of applications must be considered.

The students ought to know:

- the foundations of different theories of chemical bond, which describe structure of complex compounds (theory of valence linkage, theory of crystalline field, theory of ligand field);
- objective laws of complex compounds conduct in solutions depending on their structure and resistance; influence of different factors on equilibrium and reversibility of chemical reactions;

The students ought to be able:

- to use nomenclature and knowledge about isomerism;
- to apply the knowledge acquired.

1.3. Connection with the subjects, studied before

Chemistry of complex compounds is based on the knowledge acquired while studying subjects: "Theoretical foundations of chemistry", "Inorganic chemistry", "Analytical chemistry", "Organic chemistry".

Approximate theme outline

Theme	lecture	Laboratory practicals
Introduction	1	_
1. The main notions and terms	3	—
2. Structure and nomenclature of complex compounds	2	_
3. Classification and isomerism of complex compounds	4	_
4. Ligands of complex compounds	4	—
5. Chemical bond in complex compounds	4	—
6. Solutions of complex compounds	2	4
7. Chemical properties of complex compounds	4	4
8. Application of complex compounds	2	—
TOTAL	26	8

2. SUBJECT MATTER

Introduction

Subject "Chemistry of complex compounds" and its place amount other chemical science. Role chemistry of complex compounds in the sphere of nanotechnologies, streamlined synthesis of nanoparticles and monomolecular layers.

The main notions and terms

Donor atoms. Denticity and ambident behaviour. Polytopness. Coordination polyhedra.

Structure and nomenclature of complex compounds

Complex compounds. Sequestrant (complexing agent). Ligands, their classification and denticity. Coordination number of atom (ion)- sequestrant. Inside and outside sphere of complex compounds. Nomenclature of complex compounds. Kinds of complex compounds. Intracomplex compounds. Complexonates of metals. Complexes with macrocyclic ligands.

Classification and isomerism of complex compounds

Complex compounds classification by the type of coordinating ligands. Ammoniates. Aquacomplexes. Anionhalagenates and kationhalagenates. Hydride complexes. Metal carbonyls. Special groups of complex compounds: complexes with unsaturated molecules (π -complex); cyclic complex compounds (helates); polynuclear complex compounds. Clusters.

Isomerism of complex compounds: geometric (plane symmetric), optical, hydrated, bonded, ionization. Transformational isomerism. Coordination isomerism and polimery. Conformation isomerism.

Complex compounds with coordination number from 2 to 10 and more.

Ligands of complex compounds

Ligands of complex compounds. Molecules of water and hydroxide-ion. Amines. Organic nitriles. Phosphites. Trialkinphosphites. thioethers, mercaptans, ethylene, acetylene and their derivatives. Halogenide-, cyanide-, rhodanide-ions and etc. Mutual influence of ligands in inside sphere of complex compounds. Rules of Peirone and Iergensen. Objective laws of trans-effect and cis-effect.

Chemical bond in complex compounds

Chemical bond in complex compounds, electrostatic. Theory of the valence bond. Valence-shell electron-pair repulsion conception. Theory of crystalline field, method of molecular orbital. Molecules with deficit of electrons.

Chelate effect. Chelate compounds, isomerism of chelate complexes.

Solutions of complex compounds

Equilibrium in solutions of complex compounds. Stepwise character of equilibrium. Stability and instability of complex ions. Factor of influence on their acidic properties, acid-base equilibrium in solutions of hydrated complexes. Polymerization of hydroxocomplexes. Basicity of complex compounds.

Chemical properties of complex compounds

Mechanism of reactions of coordination compounds. Chemical reactivity of coordination ligands of complex compounds. Redox (reduction-oxidation) properties of complex compounds. Rinds of redox transformation of electrode potential.

Application of complex compounds

Application of complex compounds. Analytical and organic chemistry. Catalysis. Dyestuffs. Pigments and etc.

Teaching and methodic chart of the discipline

Number	Name of the section, topic, lecture; the list of	Number of academic		Material	Literature	Form of
of the	studied themes	ho	hours			control
section,		lectures	Laboratory	(visual,		
topic,			Studies	methodical		
lecture				teaching aids		
				etc)		
	Chemistry of Complex Compounds	26	8			
1, 2	Complex compounds. Sequestrant (complexing	4	2	Manuals and	[1,2] [3]	Credit
	agent). Ligands, their classification and denticity.			tutorials		
	Coordination number of atom (ion)- sequestrant.					
	Inside and outside sphere of complex compounds.					
	Nomenclature of complex compounds. Kinds of					
	complex compounds. Intracomplex compounds.					
	Complexonates of metals. Complexes with					
	macrocyclic ligands.					
3	Complex compounds classification by the type of	1	2	Manuals and	[1,2]	Credit
	coordinating ligands. Ammoniates.			tutorials	[10] [12]	
	Aquacomplexes. Anionhalagenates and					
	kationhalagenates. Hydride complexes. Metal					
	carbonyls. Special groups of complex compounds:					
	complexes with unsaturated molecules $(\pi$ -					
	complex); cyclic complex compounds (helates);					
	polynuclear complex compounds. Clusters.					
3, 4	Isomerism of complex compounds: geometric	2		Manuals and	[1,2] [5]	Credit
	(plane symmetric), optical, hydrated, bonded,			tutorials		
	ionization. Transformational isomerism.					
	Coordination isomerism and polimery.					
	Conformation isomerism.					
5	Complex compounds with coordination number	1		Manuals and	[1,2]	Credit

	from 2 to 10 and more.			tutorials			
6, 7	Chemical bond in complex compounds, electrostatic. Theory of the valence bond. Valence- shell electron-pair repulsion conception. Theory of crystalline field, method of molecular orbital. Molecules with deficit of electrons.	5		Manuals a tutorials	and	[1,2] [6] [9,13,14]	Credit
8	Chelate effect. Chelate compounds, isomerism of chelate complexes.	1		Manuals a tutorials	and	[1,2] [4] [8]	Credit
8,9	Ligands of complex compounds. Molecules of water and hydroxide-ion. Amines. Organic nitriles. Phosphites. Trialkinphosphites. thioethers, mercaptans, ethylene, acetylene and their derivatives. Halogenide-, cyanide-, rhodanide-ions and etc. Mutual influence of ligands in inside sphere of complex compounds.	2		Manuals a tutorials	and	[1,2] [12] [13]	Credit
10, 11	Equilibrium in solutions of complex compounds. Stepwise character of equilibrium. Stability and instability of complex ions. Factor of influence on their acidic properties, acid-base equilibrium in solutions of hydrated complexes.	3,5	2	Manuals a tutorials	and	[1,2] [7] [13]	Credit
11	Polymerization of hydroxocomplexes. Basicity of complex compounds.	0,5		Manuals a tutorials	and	[1,2]	Credit
12	Redox (reduction-oxidation) properties of complex compounds. Types of redox transformations of complex compounds. Influence of complexation on electrode potential.	2		Manuals a tutorials	and	[1,2[[5] [12]	Credit
13	Chemical reactivity of coordination ligands of complex compounds. Application of complex compounds. Analytical and organic chemistry. Catalysis. Dyestuffs. Pigments and etc.	2	2	Manuals a tutorials	and	[1,2] [8] [15]	Credit

THE LIST OF RECOMMENDED LITERATURE a) the main

- 1. Кукушкин, Ю.Н. Химия координационных соединений / Ю.Н. Кукушкин. М.: Высшая школа, 1985. 455 с.
- 2. Координационная химия: учеб.пособие / В.В.Скопенко [и др.]. М.: ИКЦ «Академкнига», 2007. 488 с.

b) the additional

- 3. Гринберг, А.А. Введение в химию комплексных соединений / А.А. Гринберг. 4е изд., исправленное. – Л.: Химия, 1971. – 631 с.
- Кукушкин, В.Ю. Теория и практика синтеза координационных соединений / В.Ю. Кукушкин, Ю.Н. Кукушкин; под ред. акад. Н.М.Жаворонкова. – Л.: Наука, 1990. – 260 с.
- 5. Дятлова, Н.М. Комплексоны / Н.М. Дятлова, В.Я. Темкина, Р.П. Ластовский; под ред. д.х.н. М. Ластовского. М.: Химия, 1970. 417 с.
- 6. Берсукер, И.Б. Электронное строение и свойства координационных соединений: Введение в теорию / И.Б. Берсукер. 3-е изд., перераб. Л.: Химия, 1986. 288 с.
- 7. Макашев, Ю.А. Соединения в квадратных скобках / Ю.А. Макашев, В.М.Замяткина. Л.: Химия, 1976. 216 с.
- 8. Комплексоны в биологии и медицине: обзорная информация / Химическая промышленность, серия «Реактивы и особо чистые вещества». М.: НИИТЭХИМ, 1986. 50 с.
- 9. Кукушкин, Ю.Н. Соединения высшего порядка / Ю.Н. Кукушкин. Л.: Химия, 1991. 112 с.
- 10. Комплексные соединения: метод. указания по курсу «Общая и неорганическая химия» для студ.спец. 25.03»Технология электрохимических производств» / Л.Н.Новикова, В.Б.Дроздович, И.Г.Гунько. Минск: БГТУ, 1993. 30 с.
- 11. Волков, А.И. Большой химический справочник / А.И. Волков, И.М.Жарский. Минск: Современная школа, 2005. 608 с.
- 12. Гликина, Ф.Б. Химия комплексных соединений / Ф.Б. Гликина, Н.Г. Ключников. М.: Просвещение, 1972. 167 с.
- Костромина, Н.А. Химия координационных соединений / Н.А. Костромина, В.Н. Кумок, Н.А. Скорик; – под ред. проф. Н.А. Костроминой. – М.: Высшая школа, 1990. – 431 с.
- 14. Бек, М. Исследование комплексообразования новейшими методами / М. Бек, И. Надьпал. М.: Мир, 1989. 408 с.
- 15. Пешкова, В.М. Методы абсорбционной спектроскопии в аналитической химии / В.М. Пешкова, М.И. Громова. М.: Высшая школа, 1976. 279 с.

УДК 54-386 (073) ББК 24я73 Х-46

Recommended to be approved by:

The Department of General and Inorganic Chemistry of Belarusian State Technological University (minutes № 4 from 20.11.2008);

The Scientific-methodology C ouncil of Belarusian State Technological University (minutes № 3 from 24.12.2008)

Developer:

Valeriy Ashuyko – associate professor of the Department of General and Inorganic Chemistry of Belarusian State Technological University, Ph.D of Chemical Science

Reviewers:

Leschev S.M. – professor of the Department of Analytical Chemistry of Belarusian State University, Doctor of Chemical Science;

Matveiko N.P. – professor, head of the Department of Phisicochemistry of materials of Belarusian State Economical University, Doctor of Chemical Science

Chemistry of Complex Compounds: Regular Curriculum for Higher Education Institution / dev.: V.A. Ashuyko – Minsk: BSTU, 2009. – 8 p.

УДК 54-386 (073) ББК 24я73 X-46 Belarusian State Technological University, 2009 V.A. Ashuyko, 2009