С.Е. Баранцева¹, Ю.А Климош¹, Г.Б. Захаревич¹, М.А. Курилович¹, Б.Ю. Вонсик¹, Ю.К. Кулешов²

 1 Белорусский государственный технологический университет 2 «НПЦ по геологии» Минск, Беларусь

ПУТИ РЕШЕНИЯ ЭКОЛОГИЧЕСКИХ ПРОБЛЕМ ПРИ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ МАГМАТИЧЕСКИХ И ОСАДОЧНЫХ ПОРОД БЕЛАРУСИ

Аннотация. Приведены возможные пути решения экологических проблем при разработке месторождений магматических и осадочных пород, включающие утилизацию отходов их добычи для получения силикатных материалов; рекультивацию нарушенных земель; устройство прудов на месте карьеров и их дальнейшее использование.

S.E. Barantseva¹, Yu.A. Klimosh¹, G.B. Zakharevich¹, M.A. Kurilovich¹, B.Yu. Vonsik¹, Yu.K. Kuleshov²

¹Belarusian State Technological University ²"SPC for Geology" Minsk, Belarus

WAYS TO SOLVE ENVIRONMENTAL PROBLEMS DURING THE DEVELOPMENT OF DEPOSITS OF IGNEOUS AND SEDIMENTARY ROCKS OF BELARUS

Abstract. Possible ways of solving environmental problems in the development of deposits of igneous and sedimentary rocks, including the disposal of waste from their extraction to obtain silicate materials; recultivation of disturbed lands; arrangement of ponds on the site of quarries and their further use are given.

Цель работы — обосновать и подтвердить возможные пути решения экологических проблем при разработке месторождений природного минерального сырья на территории республики.

В недрах Беларуси открыто более 10 тыс. месторождений минерального сырья, включающих около 30 видов полезных ископаемых. Часть полезных ископаемых в настоящее время добывается, часть разведана и может разрабатываться в будущем [1].

По условиям залегания полезные ископаемые Беларуси делятся на 2 группы: приуроченные к кристаллическому фундаменту и платформенному чехлу. К первой группе относятся преимущественно

магматические полезные ископаемые (строительный камень, железные руды, руды цветных металлов и др.), большая часть полезных ископаемых второй группы отнесена к платформенному чехлу и имеет осадочное происхождение (нефть, торф, каменная и калийные соли, мел и др.).

По условиям использования полезные ископаемые делятся на 4 группы: горючие, металлические, неметаллические и жидкие (рис.1).

Рис. 1 – Деление полезных ископаемых по условиям потребления

Неметаллические (нерудные) полезные ископаемые делятся на строительные материалы и химическое сырье. Многие полезные ископаемые (доломит, гипс, мел, мергель и др.) могут использоваться и как химическое сырье, и как строительные материалы.

Согласно детальному анализу состояния вопроса в области экологической безопасности одной из основных важных проблем эколого-геохимическая, связанная с задачей негативного воздействия так называемой «нулевой» фракции (отсева), образующегося при дроблении горных пород, на геологическую среду. Учитывая преобладающую окислительную обстановку, присущую почвенным растворам прилегающих горно-промышленным К предприятиям территорий, И миграционную способность породообразующих химических элементов, можно предположить накопление в поверхностных отложениях большого количества Ba, Sr, Zn, Cr, Pb, Zr, Fe, Mn, Ti, Al. Возможно также активное биогенное накопление Zr, Ba, Mn, Zn, Cu и их соединений в пойменных отложениях, что приводит возникновению К техногенных геохимических аномалий.

Одним из путей решения экологических проблем является рекультивация нарушенных земель, устройство прудов на месте карьеров и их использование для культурных целей, рыборазведения, сохранения природных сокровищ.

По нашему мнению вторым важнейшим путем решения экологических проблем при разработке месторождений строительного камня и других магматических пород на территории Беларуси является использование отходов их добычи и дробления в качестве основных компонентов сырьевых композиций для получения силикатных материалов различного назначения (стекол, керамических, стеклокерамических и др.), что приведет к сокращению количества соответственно, ликвидации отвалов, занимающих огромные площади.

Естественный (природный) строительный камень на территории Беларуси представлен разнообразными породами кристаллического фундамента (граниты, гранодиориты, диориты, мигматиты и др.). В Брестской области разведаны два месторождения строительного камня (Микашевичи и Ситница), в Гомельской – месторождение строительного камня (Глушковичи, участок Крестьянская Нива) и месторождение облицовочных материалов (Карьер Надежды). Наиболее крупным из них является месторождение Микашевичи. Промышленные запасы строительного камня в Республике Беларусь составляют 645,835 млн.м³. В том числе: месторождения Микашевичи — 322,305 млн.м³; месторождения Глушковичи — 62,223 млн.м³; месторождения Ситницкое (Житковичи) — 261,307 млн.м³.

На детально разведанном месторождении базальтов и сапонитсодержащих туфов их запасы утверждены в количестве 164153,9 тыс.т. по категориям C_1+C_2 . Попутные полезные ископаемые представлены вскрышными глауконитсодержащими породами – песками, алевритами и алевролитами, предварительно оцененные запасы которых по категориям C1+C2 составляют 77,098 млн.м³.

Поскольку в вышеприведенных горных породах присутствуют практически все необходимые оксиды, участвующие в формировании силикатных материалов (таблица1), они по химико-минеральному составу являются ценным кремнийсодержащим сырьевым компонентом.

В течение ряда лет в Белорусском государственном технологическим университете при активном участии Государственного предприятия «НПЦ по геологии» проводились исследования возможности получения широкой линейки силикатных материалов различного назначения. В качестве основного компонента использовались вышеперечисленные магматические и осадочные породы, предоставленные Слуцкой ГРП филиала «БКГРЭ».

Таблица 1- Химический состав сырьевых компонентов

Компоненты	Содержание оксидов, мас.%									
	SiO ₂	Al ₂ O ₃	CaO	MgO	FeO+ Fe ₂ O ₃	K ₂ O+ Na ₂ O	TiO ₂	P ₂ O ₅	MnO	п.п.п.
Гранитоиды	61,63	14,86	4,38	3,32	8,94	2,52	0,93	0,35	0,19	2,87
Базальт	46,11	11,49	5,00	7,87	14,00	4,30	1,74	0,31	ı	9,18
Диабазы и габбро-диабазы	45,54	,	7,78	9,43	11,30	4,67	0,59	0,20	0,42	5,23
Глауконитсодержащая порода	74,26	8,28	1,21	1,79	9,29	2,30	0,79	_	0,14	1,94

Разработана рецептура сырьевых композиций, содержащих в качестве основного компонента магматические и осадочные породы месторождений республики Беларусь, разведанных теплоизоляционные пористые заполнители, керамические материалы, петроситаллы И каменное литье. Проведенная экспериментально-теоретическая физико-химических оценка процессов, происходящих при нагревании исследуемых пород, структуро- и фазообразования в образцах при их термической обработке, позволила разработать научные основы получения материалов с необходимым комплексом силикатных физикохимических свойств.

Следует отметить, при получении вышеуказанных ЧТО материалов роль и влияние используемых пород практически аналогичны, требуется лишь корректировка рецептуры сырьевых композиций в зависимости от химико-минерального состава исходных материалов и их назначения. Поэтому отклонения показателей физикосвойств образцов, полученных химических на основе магматических (гранитоидных, базальтовых, использованием диабазовых) пород и осадочных (глауконитсодержащих вскрышных отложений), находятся в допустимых пределах и не имеют значительных отличий [2–4]. Так, для теплоизоляционных пористых заполнителей наиболее востребованной фракции (14–16 мм) следующие: объемная плотность 650-780 кг/м³, насыпная плотность $420-470 \text{ кг/м}^3$, механическая прочность при сжатии $2,1-2,3 \text{ M}\Pi a$, коэффициент теплопроводности 0,070-0,078 Вт/м·К, водопоглощение 7,4-8,2 %, коэффициент вспучивания 2,6-2,9; для керамического механическая прочность при сжатии морозостойкость 65–75 циклов; водопоглощение 9–10 %; для стекол – 2600-2700 кг/м³, микротвердость 6650–6700 МПа, кислотостойкость в 1 н H_2SO_4 67,5–68,2 %, щелочестойкость в 1 н NaOH95,3-96,1 %; для петроситалла и каменного литья – плотность 2800- 3300 кг/м^3 , микротвердость 8100-8800 МПа, износостойкость 0.01 0.03 г/см^2 , кислотостойкость в 1н H_2SO_4 99,3–99,8%, щелочестойкость в 1н NaOH 97,1–97,7 %.

Технологические характеристики и физико-химические свойства образцов из разработанных материалов удовлетворяют требованиям нормативно-технической документации, предъявляемым к материалам аналогичного назначения.

Таким образом, решение экологических проблем при разработке месторождений строительного камня и других магматических и территории Беларуси осадочных пород на подтверждается необходимостью ПУТИ использования рекультивации как освобождаемых от отходов земель, так и пути использования отходов горнопромышленных предприятий в качестве основных сырьевых компонентов при получении новых силикатных материалов для нужд строительства, химической, горнодобывающей, машиностроительной промышленности и индустриального текстиля.

Список использованных источников

- 1. Полезные ископаемые Беларуси: К 75-летию БелНИГРИ / Редкол.: П.З. Хомич [и др.] Мн.:Адукація і выхаванне, 2002. 528с.
- 2. Теплоизоляционный пористый материал на основе глауконитсодержащих песков и алевритов Новодворского месторождения Республики Беларусь / С.Е. Баранцева [и др.] // Весці Нац.акад.навук Беларусі. Сер. хім. навук. 2021. Т. 57, №4. С.463—471.
- 3. Научные и технологические аспекты рационального использования магматических и осадочных пород для получения силикатных материалов / С.Е. Баранцева [и др.] // Труды Кольского научного центра РАН. Серия: Технические науки. 2023. Т. 14, №4.— С.139—144.
- 4. Использование глауконитсодержащих вскрышных осадочных пород для получения стеклокерамических материалов. С.Е. Баранцева [и др.] // Труды БГТУ. Сер.2. Химические технологии, биотехнологии, геоэколоии. −2023. №1 (265). − С.122−130.