Студ. В. А. Язёнок, В. А. Дацик, Г. А. Юхимук Учащ. ГУО «Гимназия № 20 г. Минска» И. П. Стрелковский Науч. рук. доц. Т. М. Шачек

(кафедра физико-химических методов и обеспечения качества, БГТУ)

СОДЕРЖАНИЕ МИКРОЭЛЕМЕНТОВ В ЭНТОМОПРОДУКТАХ

Всем давно известно, что на сегодняшний день в условиях постоянно растущей численности населения и ограниченности территорий пригодных для сельского хозяйства одной из глобальных проблем человечества является голод. В Африке, Азии и Латинской Америке большинство населения страдает от недоедания, а особой опасности подвержены дети.

Последние исследования [1] показывают, что использование некоторых насекомых в пищу обладает даже более предпочтительным соотношением питательных веществ, чем при-ём мяса/рыбы традиционным способом. Таким образом, возникает интерес к эномофагии.

Съедобные насекомые содержат высококачественный белок (глутаминовая кислота, лейцин, пролин, аргинин и т.д.), жирные кислоты (олеиновая, стеариновая, пальмитиновая и т.д.), макро (Са, К, Na, Р и т.д.) и микроэлементы (Fe, Cd, Pb, Cu, Zn и т.д.). Насекомые имеют высокую степень конверсии пищи: сверчкам нужно в шесть раз меньше корма, чем крупному рогатому скоту, в четыре раза меньше, чем овцам, и в два раза меньше, чем свиньям и цыплятамбройлерам, чтобы произвести такое же количество белка. Кроме того, они выделяют меньше парниковых газов и аммиака, также насекомых можно выращивать на органических отходах [1].

Учитывая вышесказанное, актуальным является исследование содержания микроэлементов (Fe, Cd, Pb, Cu, Zn) в различных насекомых и продуктах их переработки. Объекты исследований — сверчки обычные, зофобасы, аргентинские тараканы, сверчки сушеные, мучной хрущак жареный во фритюре. Для проведения эксперимента использовались стандартные методы измерений [2, 3] и поверенное оборудование: анализатор ТА-Lab (зав. № 0101200, 27.02.2023) и фотоэлектроколориметр (зав. № 0500605, 10.2023).

Результаты исследований представлены в таблице.

Таблица – Содержание Fe, Cd, Pb, Cu, Zn в энтомопродуктах

Содержание элемента, мг/кг	Наименование объекта				
	сверчки обычные	зофобасы	аргентинские тараканы	сверчки сушеные	мучной хрущак жареный
Fe	173,0	170,0	297,0	326,0	595,0
Cd	0,01	0,006	0,037	не обн.	0,12
Pb	0,05	0,11	0,072	0,28	0,05
Cu	6,3	3,8	2,9	11,0	8,5
Zn	166,0	22,0	65,0	862,0	147,0

Таким образом, результаты определения Fe, Cu и Zn согласуются с литературными данными, а содержание токсичных элементов Pb и Cd не превышает нормативов, установленных для продовольственного сырья.

ЛИТЕРАТУРА

- 1. Insects for food and feed [Электронный ресурс] / Food and Agriculture organization of United Nations. Минск, 2023. Режим доступа: https://www.fao.org/edible-insects/en/– Дата доступа: 01.11.2023.
- 2. Определение цинка, кадмия, свинца и меди в пищевой продукции: МУ 31-04/04. Введ. 31.01.2004. Φ ГУ Томский центр стандартизации, метрологии и сертификации, 2004. 25 с.
- 3. Продукты пищевые. Методы определения железа: ГОСТ 26928–1986. Введ. 01.07.88. Минск: Межгос. совет по стандартизации, метрологии и сертификации: Белорус. гос. ин-т стандартизации и сертификации, 1988. 5 с.