Студ. В.С. Семененко, А.С. Лесогорова Науч. рук. доц. О.М. Касперович (кафедра полимерных композиционных материалов, БГТУ)

ВЛИЯНИЕ СМЕСЕЙ МИНЕРАЛЬНЫХ НАПОЛНИТЕЛЕЙ НА СВОЙСТВА ПОЛИМЕРНОЙ МАТРИЦЫ

Использование наполнителей в полимерах имеет долгую историю и широкий спектр применений. Наполнение минеральными наполнителями является подходом для улучшения свойств полимерных материалов, таких как механическая прочность, жесткость, термическая стабильность и износостойкость. Этот подход предлагает множество перспективных возможностей в различных отраслях, с целью создания новых материалов с оптимизированными свойствами и улучшенными механическими характеристиками.

В исследовании изучалось изменение физико-механических свойств композиций на основе термопластичных полимеров при добавлении высокотеплопроводных наполнителей, так как использование ненаполненных полимеров, ограничено их низкой теплопроводностью, составляющей около 0,1-0,5 Bt/(м*K).

Для преодоления этого препятствия, в полимерную матрицу вводят высокотеплопроводные наполнители. Нами были использованы следующие материалы: полиэтилен марки M3204RUP, в форме порошка, в качестве базового термопластичного связующего, гексагональный нитрид бора с массовой долей BN не менее 98,0%, насыпной плотностью не менее 0,27 г/см³, массовой долей нитрида бора, прошедшего через сито, со стороной ячейки в свету 100 мкм по ДСТУ ISO 3310-1, не менее 90%, так как электрические изоляционные характеристики практически не меняются при добавлении частиц BN в полиэтилен низкой плотности, а кристаллическая структура нитрида бора уменьшает рассеивание фотонов, что приводит к увеличению теплопроводности[2]; карбид кремния марки 63C F2000, имеющий насыпную плотность 3,0-3,1 г/см³, размер частиц 0,9-1,5 мкм, теплопроводность 140-150 Bт/(м*К), так как добавление SiC может улучшать механическую сцепляемость между наполнителем и матрицей полимера, что приводит к повышению совместимости компонентов и улучшению механических свойств композитного материала, и алюминиевая пудра марки ПАП-2 с насыпной плотностью 0,15-0,3 г/см³, толщиной лепестков частиц 0,25-0,5 мкм и удельной поверхностью 10000 см.кв./г, в качестве наполнителей.

Для получения композиций использовалась порошковая смесь вышеперечисленных компонентов в разных массовых отношениях. Массовые доли компонентов в смесях представлены в таблице 1.

Таблица 1- Массовые доли компонентов

TT	1	2	2	1	
Номер композиции	1	2	3	4	
Компонент	Значения, %				
PE	40	39	60	60	
SiC	10	1	_	_	
Al	50	30	10	30	
BN	_	30	30	10	

Перемешивание смеси осуществлялось вручную, а окончательная гомогенизация производится в материальном цилиндре пластомера. Далее композиционный материал получали методом прессования. Испытания на одноосное растяжение проводили в соответствии с ГОСТ 11262. Результаты испытаний представлены в таблице 2.

Таблица 2- Результаты испытаний на растяжение

№ композиции	Предел текучести (МПа)	Деформация при пределе текучести (%)	Модуль упругости при растяжении (V=50) (МПа)	Максимум Напряжение при растяжении (МПа)	Деформация при Максимум Напряжение (%)
1	4,88	1,7	748	6,46	1,6
2	2,11	2,0	580	4,82	2,1
3	3,13	2,3	318	5,30	4,7
4	4,54	3,6	234	5,55	5,2

Таким образом, можно сделать вывод, что присутствие SiC увеличивает модуль упругости, присутствие алюминия, наоборот, его уменьшает. Алюминий увеличивает максимум напряжений при растяжении, в то время как нитрид бора этот показатель уменьшает.

ЛИТЕРАТУРА

1. Komatsu, R.; Nakazato, R.; Sasaki, T.; Suzuki, A.; Senda, N.; Kawata, T.; Jimbo, Y.; Aoyama, T.; Ohno, N.; Kawashima, S.; et al. Repeatedly foldable AMOLED display. J. Soc. Inf. Disp. 2015, 23, 41–49.