
70 Òðóäû ÁÃÒÓ, 2024, ñåðèÿ 3, № 1, ñ. 70–76

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

ÀËÃÎÐÈÒÌÈÇÀÖÈß È ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ
ALGORITHMIC AND PROGRAMMING

УДК 004.4−004.9

А. А. Prihozhy
Belarusian National Technical University

DYNAMIC REDUCTION OF TIME COSTS ON IT-PROJECT
BY FORMING TEAMS OF COMPATIBLE PROGRAMMERS

The combinatorial problem of forming programming teams has been studied in several works. The pro-
posed techniques and algorithms for solving the problem account for various aspects and parameters of
the software development process and programming teams’ operation. The problem is NP-hard in general
case. Accounting for compatibility of programmers leads to forming teams with increased efficiency of
operation which reduces IT-project time costs. Our previous work researched how the compatibility of
programmers influences the overall runtime of teams. This paper proposes a more accurate dynamic
model of calculating the programmers’ time costs changes during forming teams. At each adding of a
programmer to a team, the model recalculates the time costs of the programmers and teams accounting
for their compatibility. The advanced dynamic optimization algorithm of stepwise pairwise merging of
teams be developed in the paper aims to reduce the time costs of the project the programmers are working
on. The created software and conducted computational experiments have shown the reduction in project
time costs by tens of percent for large sets of programmers.

Keywords: programmer, project, time costs, compatibility of programmers, forming teams, optimization.

For citation: Prihozhy А. А. Dynamic reduction of time costs on IT-project by forming teams of
compatible programmers. Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2024,
no. 1 (278), pp. 70–76.

DOI: 10.52065/2520-6141-2024-278-11.

А. А. Прихожий
Белорусский национальный технический университет

ДИНАМИЧЕСКОЕ СОКРАЩЕНИЕ ЗАТРАТ ВРЕМЕНИ НА ИТ-ПРОЕКТ
ПУТЕМ ФОРМИРОВАНИЯ КОМАНД СОВМЕСТИМЫХ ПРОГРАММИСТОВ

Комбинаторная задача формирования команд программистов изучалась в ряде работ. Предло-
женные методы и алгоритмы решения задачи учитывают различные аспекты и параметры про-
цесса разработки программного обеспечения и работы команд программистов. В общем случае
задача является NP-трудной. Учет совместимости программистов приводит к формированию команд
с повышенной эффективностью работы, что значительно сокращает временные затраты на
ИТ-проект. Наши предыдущие работы исследовали, как совместимость программистов влияет на общее
время работы команд. В данной работе предлагается более точная динамическая модель расчета
изменения временных затрат программистов в процессе формировании команд. При каждом
добавлении программиста в команду модель пересчитывает временные затраты программистов и
команд с учетом их совместимости. Разработанный в статье алгоритм динамической оптимизации
путем пошагового попарного слияния команд направлен на снижение временных затрат на проект,
над которым работают программисты. Созданное программное обеспечение и проведенные вы-
числительные эксперименты показали снижение временных затрат на проект на десятки про-
центов при большом количестве участников проекта.

Ключевые слова: программист, проект, временные затраты, совместимость программистов,
формирование команд, оптимизация.

Для цитирования: Прихожий А. А. Динамическое сокращение затрат времени на ИТ-проект
путем формирования команд совместимых программистов // Труды БГТУ. Сер. 3. Физико-мате-
матические науки и информатика. 2024. № 1 (278). С. 70–76 (In English).

DOI: 10.52065/2520-6141-2024-278-11.

A. A. Prihozhy 71

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

Introduction. The problem of forming program-
ming teams and managing projects has been studied
in works [1–10]. The problem is combinatorial and
NP-hard in general case. Therefore, exact and heuris-
tic algorithms have been developed for solving it for
various objective functions and constraints. Work [11]
has considered how the compatibility of programmers
influences the overall runtime of teams and how the
influence of programmers on each other can be used
for reducing the project time costs. A matrix of com-
patibility of programmers has been proposed and a
greedy algorithm of stepwise pairwise merge of teams
has been developed at the aim of solving the problem
of forming teams. The algorithm analyses and exploits
programmers’ compatibility to find the number, size
and staff of the teams reducing the overall runtime.

In this paper, we propose a more accurate dynamic
model of calculating changes in the time costs of pro-
grammers during forming teams, propose and imple-
ment an advanced optimization dynamic algorithm
of stepwise pairwise merge of programming teams.

Main part. Let P = {p1, …, pn} be a set of n
programmers working on an IT project. Vector t =
= (t1, … ti, … tn) describes the programmers’ basic
time costs, which do not include interaction costs
within team.

Let G = {g1…gk} be a set of teams the program-
mers are allocated to. If programmers are in a same
team, their time costs must be corrected depending
on the compatibility of programmers. Matrix dP rep-
resents corrections (%) of the programmers’ costs.
In matrix principal diagonal, dPi,i = ti. For program-
mers i and j, dPi,j (dPj,i) shows how programmer i (j)
influences on tj (ti). Values dPi,j and dPj,i can be neg-
ative and positive. Four combinations are possible:
1) dPi,j < 0 and dPj,i < 0; 2) dPi,j ≥ 0 and dPj,i ≥ 0;
3) dPi,j < 0 and dPj,i ≥ 0; 4) dPi,j ≥ 0 and dPj,i < 0.
The first combination is the most preferable since
the time costs of both programmers are reduced.

In work [11], the changes in the programmers’
time costs are calculated with dTi,j = tj ⋅ dPi,j / 100
before allocating the programmers to a team and then
are summed. A drawback of the approach is that for
significant changes of programmers’ time costs the
overall costs can become negative. In this paper, we
develop more accurate model for estimating the time
costs changes. Every adding of a programmer to a team
causes the recalculation of the costs using matrix TP.

1 1,2 1,

2,1 2 2,

,1 ,2

.

n

n

n n n

T d d
d T d

TP

d d T

 =

Initially, Ti = ti, i = 1…n. The non-diagonal ele-

ment di,j = 100 ⋅ dPj,i is a positive or negative share
of Tj that is added to Tj if programmers i and j are

included in a same team: Tj = Tj + Tj ⋅ di,j. According
to the model, adding a new programmer to a team
immediately changes the time costs of all program-
mers belonging to the team. The positive value of
di,j makes larger the Tj costs, and the negative value
makes them smaller. To reduce the time costs of
team g, programmers with negative di,j should be in-
cluded in the team first.

Theorem 1. Let u = u1…u|g| be an order of includ-
ing programmers in team g. The overall time costs T(g)
of the programmers of team g is determined by (1).

()
1 |g| 1 |g|

,
... ...

(g) 1 .p j p
p u u j u u

j p

T T d
= =

≠

= ⋅ +

 ∏
 (1)

Proof. Let’s prove by induction that the time
costs of programmer p from team hk = {u1…uk}, k ≤ |g|
are determined by equation

()
1

,
...

(,) 1 .
k

k
p j p

j u u
j p

T p h T d
=

≠

= ⋅ +∏
 (2)

Base case. Let a team of two programmers (shown
in Fig. 1 by dark cells of matrix TPk-1) be h2 = {u1, u2}.
Then programmer u2 influences on the time costs of
programmer u1 and, therefore,

()1 2 1
2

1 ,(,) 1u u uT u h T d= ⋅ + .
Similarly,

()2 1 2
2

2 ,(,) 1u u uT u h T d= ⋅ + .
The time costs of programmer j = u3…uk who

establishes a separate team are Tj.
Induction step. Suppose (2) holds for hk-1 =

= {u1…uk-1} as shown by dark cells of dimension
(k − 1)×(k − 1) in Fig. 2 describing matrix TP2 for
two teams. The costs of programmer uk who is not
in team hk-1 are Tuk. If uk is added to hk-1, a team hk is
established (filled block of dimension k×k in Fig. 3).
Programmer uk gets influence on the time costs of
each of programmers u1…uk-1. Therefore, their time
costs are multiplied by factors (1 + duk,u1), … ,
(1 + duk,uk-1) respectively, which is compliant with (2).
In their turn, all the programmers get influence
on the time costs of programmer uk with factor
(1 + du1,uk) ⋅ … ⋅ (1 + duk-1,uk). As a result, the time costs
of programmer uk are determined by (2).

The elements of principal diagonal of matrix TP1
shown in Fig. 3 prove that the time costs of all pro-
grammers included in a team are calculated with (2),
and at k = |g| and hk = g, the overall sum of the pro-
grammers’ time costs is equal to T(g) defined by (1).
The theorem is proved.

Corollary 1. The value of T(g) defined by (1)
does not depend on the order of including program-
mers in team g.

72 Dynamic reduction of time costs on IT-project by forming teams of compatible programmers

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

2 1

2

1 1 1 2

2 1 2 1 2

1 2

,

,

,

, ,

, ,

,

1

(1)

(1)
k

k

k k k

u u

u u

u

u u u u u

u u u u u

u u u u

k

T d d

d T d
T

d

d

d d T

P −

⋅ +

⋅ + =

Fig. 1. Matrix TPk-2 of time costs of k programmers included
in k – 1 teams (two programmers are in the first team)

2
1

1

1 1

1 1 1 1
1

1 1 1 1
1 2

, ,
.

.

,

,

, ,

..

2

, ,
..

(1)

(1)

k
k

k k k
k

k

k k

k k k k

u j u u u

u

j u u

u u u j u
j u

u u

u

u

u
u

u u u

T

dT d d

P
d T d d

d d T

−
−

− − −

−

−
−

=

=

 ⋅ +

 = ⋅ +

∏

∏

Fig. 2. Matrix TP2 of time costs of k programmers included

in 2 teams (k – 1 programmer are in the first team)

1 1 1 1 1
2

1 1 1 1 1
1 , 1

1 1
2 1

, , ,
...

1
, , ,

...

, , ,
...

(1)

(1)

(1)

k k
k

k k k k k
k k

k k k k k
k

u j u u u u u
j u u

u u u j u u u
j u u j u

u u u u u j u
j u u

T d d d

TP d T d d

d d T d

−

− − − −
−

−
−

=

= ≠

=

 ⋅ +

= ⋅ +

⋅ +

∏

∏

∏

Fig. 3. Matrix TP1 of time costs of k programmers included in single team

Proof. Let u be a permutation that determines

the order of including the programmers in team g.
Let’s reorder the programmers listed in u to obtain
a permutation v such that vj = j, j = 1…|g|. To do this,
we find element uk = j and exchange it with element
uj for j = 1…|g|. According to (2), the exchange does
not change the value of T(p, g) for the elements
of matrix TP1‘s principal diagonal (Fig. 3) since
the multiplication operation used in expression
(1 + du1,p) ⋅ … ⋅ (1 + duk,p) is commutative and asso-
ciative. Any permutation of the programmers can be
replaced with v, therefore all of them yield the same
value of T(p, g). The corollary is proved.

Corollary 1 allows to rewrite (1) as

 (),(g) 1 .p j p
p g j g

j p

T T d
∈ ∈

≠

 = ⋅ +

 ∏ (3)

If dj,p is negative, then (1 + dj,p) < 1, therefore,
T(p, g) is decreased. If dj,p is positive, then (1 + dj,p) > 1,
therefore, T(p, g) is increased. The value of T(p, g)
is smaller if the larger number of negative elements
dj,p are in the matrix.

The overall time costs of teams of set G are

(g).G

g GT T∈= (4)

If Ω is a set of all possible partitioning of set P
of programmers into a set G of teams, the combina-
torial optimization problem we solve is

min .G

G
T

∈Ω (5)

In the paper, we propose a dynamic greedy al-
gorithm to solve (5) heuristically for large sets of
programmers. Unlikely to [11], the algorithm recal-
culates time costs of programmers at every step of
pairwise merge of teams.

The dynamic greedy algorithm of stepwise pair-
wise merge of teams (DGAMT) is described by Al-
gorithm 1. The set P of programmers, vector t of
programmers’ basic time costs and matrix TP of
pairwise changes of programmers’ time costs are its
inputs. The set G of teams and the overall time costs
T

G are its outputs. DGAMT is derived from Theo-
rem 1 and Corollary 1.

Performing initialization, the algorithm allocates
each programmer pi to team {pi}. The teams’ overall
time costs TG are the sum of ti, i = 1…n. Each ele-
ment of two-dimensional array ΔT is initialized by
calculating a difference between T(g’ ∪ g”) and
T(g’) + T(g”) where g’ and g” are teams-candidates
for merging.

A. A. Prihozhy 73

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

−−−
Algorithm 1: Dynamic greedy algorithm of stepwise
pairwise merge of teams (DGAMT)
−−−
Input: A set P = {p1, …, pn} of programmers
Input: A vector t = (t1…tn) of programmers’ basic time

costs
Input: A matrix TP[n×n] of programmers’ pairwise

time costs changes
Output: A set G of programming teams
Output: A runtime Time(G) of programming teams
G ← ∅ TG ← 0 go ← true
for i ← 1 to n do

gi ← {pi} T(gi) ← t(pi) ← ti
G ← G ∪ {gi} TG ← TG + ti

for g’ ∈ G do
BestC(g’).team ← undefined
BestC(g’).ΔT ← ∞
for g” ∈ G do

T(g’ ∪ g”) ← TeamRuntime(P, t(p), TP, g’, g”)
ΔT(g’, g”) ← T(g’ ∪ g”) – T(g’) – T(g”)
ΔT(g”, g’) ← ΔT(g’, g”)
if BestC(g’).ΔT > ΔT(g’, g”) then

BestC(g’).ΔT ← ΔT(g’, g”)
BestC(g’).team ← g”

while (go) do
go ← false
g’ ←SelectBestPairOfTeams(G, BestC)
if BestC(g’).ΔT < 0 then

go ← true
g” ← BestC(g’).team
g ← g’ ∪ g”
t ← UpdateProgrammerCosts(P, t, TP, g’, g”)
T(g) ← T(g’) + T(g”) + BestC(g’).ΔT
G ← (G \ {g’, g”}) ∪ {g}
TG ← TG + BestC(g’).ΔT
BestC(g).team ← undefined
BestC(g).ΔT ← ∞
for g# ∈ G \ {g} do

T(g ∪ g#) ← TeamRuntime(P, t(p), TP, g, g#)
ΔT(g, g#) ← T(g ∪ g#) – T(g) – T(g#)
ΔT(g#, g) ← ΔT(g, g#)
if BestC(g).ΔT > ΔT(g, g#) then

BestC(g).ΔT ← ΔT(g, g#)
BestC(g).team ← g#

if BestC(g#).ΔT > ΔT(g#, g) then
BestC(g#).ΔT ← ΔT(g#, g)
BestC(g#).team ← g

return G, Time(G)
−−−
Algorithm 2: Calculating time costs of team formed by
merging a pair of selected teams (TeamRuntime)
−−−
Input: A set P = {p1, …, pn} of programmers
Input: A vector t(p) = (t(p1)… t(pn)) of programmers’

time costs in IT project
Input: A matrix TP[n×n] of pairwise changes of pro-

grammers’ time costs

Input: Teams g’ and g” selected for merging
Output: Time costs T(g’ ∪ g”) of union of two teams

T(g’ ∪ g”) ← 0
for v ∈ g’ do

t*(v) ← t(v)
for u ∈ g” do

t*(v) ← t*(v) ⋅ (1 + TP(u, v))
T(g’ ∪ g”) = T(g’ ∪ g”) + t*(v)

for v ∈ g” do
t*(v) ← t(v)
for u ∈ g’ do

t*(v) ← t*(v) ⋅ (1 + TP(u, v))
T(g’ ∪ g”) = T(g’ ∪ g”) + t*(v)

return T(g’ ∪ g”)
−−−

Each element BestC(g’) of vector BestC is ini-

tialized with BestC(g’).team which is paired with g’
and has maximal reduction BestC(g’).ΔT of time
costs. Function TeamRuntime (Algorithm 2) calcu-
lates the time costs T(g) of team that is a result of
merging g = g’ ∪ g”. At every iteration of the while
loop, DGAMT calls function SelectBestPairOf-Teams
to choose a pair of teams g’ and g” whose element
in ΔT is minimal. If all elements of ΔT are not neg-
ative, the process of merging is over. Otherwise, the
set G of teams is reconstructed: teams g’ and g” are
removed from G and team g = g’ ∪ g” is added to
G. The time costs for each p, g and G are calculated
using (2), (3) and (4).

−−−
Algorithm 3: Calculating time costs of programmers of
two teams to be merged (UpdateProgrammerCosts)
−−−
Input: A set P = {p1, …, pn} of programmers
Input: A vector t(p) = (t(p1)… t(pn)) of time costs
Input: A matrix TP[n×n] of pairwise changes of pro-

grammers’ time costs
Input: Teams g’ and g” of programmers to be merged
Output: An updated vector t(p) of time costs

for v ∈ g’ do
for u ∈ g” do

t(v) ← t(v) ⋅ (1 + TP(u, v))
for v ∈ g” do

for u ∈ g’ do
t(v) ← t(v) ⋅ (1 + TP(u, v))

return t(p)
−−−

For new team g and for each another team g#∈G,

the value of ΔT(g, g#) is calculated. This may cause
updating elements of vector BestC.Function Update-
ProgrammerCosts (Algorithm 3) updates using (2)
the time costs of programmers from teams g’ and g”
that are intended to be merged.

Example. Let P = {p1…p8} be a set of eight
programmers. Vector t = (93, 15, 47, 45, 79, 92,

74 Dynamic reduction of time costs on IT-project by forming teams of compatible programmers

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

67, 64) describes basic time costs of the program-
mers in a project. Fig. 4 gives matrix dP of program-
mers’ pairwise time costs changes (%). The overall
time costs of eight teams (one programmer per team)
are 502.0. The overall time costs of the single team
(it contains eight programmers) are 469.1 (6.6% less).
Fig. 5 describes step 1 of DGAMT’s operation.

The rows and columns of matrix ΔT correspond
to eight teams of set G = {{p1}, {p2}, {p3}, {p4},
{p5}, {p6}, {p7}, {p8}}. Element ΔTij = T({pi, pj}) –
– T({pi}) – T({pj}), i, j = 1…8, i ≠ j, is calculated
using (3). Elements of vector t are in principal diag-
onal of ΔT. The Δ and team elements of components

of vector BestC’s are in the right column (Fig. 5).
Since BestC(1).Δ and BestC(8).Δ have a minimum
value of − 13.22, teams {p1} and {p8} are selected
for merging at step 2. Fig. 6 describes step 2
of DGAMT. Teams {p1} and {p8} are merged to
{p1, p8}. The overall number of teams is reduced to
seven. DGAMT removes two rows and two columns
from matrix ΔT corresponding to teams {p1} and
{p8} and adds one row and one column for the new
team {p1, p8}. Observing column BestC, we see
that teams {p7} and {p1, p8} give a maximum re-
duction − 14.99 of the time costs. They are selected
for merging at step 3.

Fig. 4. Example matrix dP of programmers’ pairwise time

costs changes (%) after including in a same team

Fig. 5. Step 1 of merging a pair of teams from

G = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} by DGAMT

Fig. 6. Step 2 of merging a pair of teams from

G = {{2}, {3}, {4}, {5}, {6}, {7}, {1, 8}} by DGAMT

A. A. Prihozhy 75

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

Stepwise merge of teams by DGAMT at seven steps

Step Team
count Teams Overall time

costs Pair of teams merged Time costs
reduction

1 8 {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} 502.0 {1} and {8} −13.22
2 7 {2}, {3}, {4}, {5}, {6}, {7}, {1, 8} 488.8 {7} and {1, 8} −14.99
3 6 {2}, {3}, {4}, {5}, {6}, {1, 7, 8} 473.8 {4} and {5} −9.51
4 5 {2}, {3}, {4, 5}, {6}, {1, 7, 8} 464.3 {3} and {1, 7, 8} −7.32
5 4 {2}, {4, 5}, {6}, {1, 3, 7, 8} 457.0 {2} and {6} −7.13
6 3 {4, 5}, {2, 6}, {1, 3, 7, 8} 449.8 {4, 5} and {1, 3, 7, 8} −5.00
7 2 {2, 6}, {1, 3, 4, 5, 7, 8} 444.8 - 24.45

Fig. 7. Comparison of time costs (%) of single team with costs

of one-programmer teams (triangles) and comparison of time costs (%)
of dynamic greedy teams with costs of single team (diamonds) vs. programmer count

Table briefly describes 7 steps of DGAMT’s op-

eration. The time costs have been monotonically re-
duced. At step 7, the minimum time costs reduction
became positive, therefore, the merge is over. Fi-
nally, DGAMT has obtained two teams having the
overall time costs of 444.8 (that is 11.4% less than
the costs of eight initial teams).

Results. We have implemented DGAMT in the
C++ language using Visual Studio 2022 under OS
Windows 10. Experiments have been conducted on
Intel Core i7-10700 CPU processor using various P, t
and dP. Fig. 7 compares the overall time costs of
one-programmer teams, single teams and dynamic
greedy teams obtained by DGAMT for sets of 10 to
100 programmers. Vector t and matrix dP (average
value of element is 5%) were unique for each set of
programmers. The time costs of single team differed

from those of one-programmer teams by − 6.17%
to 12.65% depending on the compatibility of pro-
grammers. DGAMT have yielded greedy teams hav-
ing time costs −11.75% to −29.88% lower against
single teams.

Conclusion. In the paper, we have proposed an
accurate model of calculating the IT project time
costs which accounts for compatibility of program-
mers and updates the programmers’ time costs at
each adding of a programmer to a team. We have
used the model for reducing the overall time costs
by means of finding an appropriate number of teams,
size, and staff of each team. The dynamic greedy al-
gorithm of stepwise pairwise merge of teams real-
izes the model and shows high accuracy and effi-
ciency while forming programming teams for working
on an IT project.

References
1. Rachlin, J. N., Goodwin, R. T., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S., Das, R. A-Teams: An

Agent Architecture for Optimization and Decision-Support. In: Müller, J. P., Rao, A. S., Singh, M. P. (eds).
Intelligent Agents V: Agents Theories, Architectures, and Languages. ATAL, 1998. Lecture Notes in
Computer Science. Berlin; Heidelberg, Springer, 1999, vol. 1555, pp. 1–15.

2. Britto R., Neto P. S., Rabelo R., Ayala W. and Soares T. A hybrid approach to solve the agile team
allocation problem. 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1−8.

3. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of allocating programmers to groups. Nauka – obra-
zovaniyu, proizvodstvu, ekonomike: materialy 13-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii

76 Dynamic reduction of time costs on IT-project by forming teams of compatible programmers

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 1 2024

[Science to education, industry and economics: Proceedings of 13th international conference. Vol. 1]. Minsk,
2015, pp. 286–287 (In Russian).

4. Gutierrez J. H., Astudillo C. A., Ballesteros-Perez P., Mora-Melia D. and Candia-Vejar A. The multiple
team formation problem using sociometry. Computers and Operations Research, 2016, vol. 75, pp. 150−162.

5. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in
Agile Software Teams. In: Baumeister H., Lichter H., Riebisch M. (eds). Agile Processes in Software Engi-
neering and Extreme Programming. XP 2017. Lecture Notes in Business Information Processing. Springer,
2017, vol. 283, pp. 267–273.

6. Prihozhy A. A., Zhdanouski A. M. Method of qualification estimation and optimization of professional
teams of programmers. System analysis and applied information science, 2018, no. 2, pp. 4−11 (In Russian).

7. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer
teams. System analysis and applied information science, 2022, no. 1, pp. 40–46.

8. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams
of programmers. Open Semantic Technologies for Intelligent Systems, Minsk, BSUIR Publ., 2019, pp. 305–310.

9. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer
teams. System analysis and applied information science, 2020, no. 4, pp. 31–38.

10. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40–50.

11 . Prihozhy А. А. Optimization of programming teams on compatibility of programmers. Trudy BGTU
[Proceedings of BSTU], issue 3, Physics and Mathematics. Informatics, 2023, no 2 (272), pp. 104–110.

Список литературы
1. A-Teams: An Agent Architecture for Optimization and Decision-Support / J. N. Rachlin [et al.] // Intelligent

Agents V: Agents Theories, Architectures, and Languages, ATAL 1998: Lecture Notes in Computer Science /
J. P. Müller, A. S. Rao, M. P. Singh (eds). Berlin; Heidelberg: Springer. 1999. Vol. 1555. P. 1–15.

2. A hybrid approach to solve the agile team allocation problem / R. Britto [et al.] // 2012 IEEE Congress
on Evolutionary Computation. 2012. P. 1−8.

3. Прихожий А. А., Ждановский А. М. Генетический алгоритм разбиения коллектива программистов
на группы // Наука – образованию, производству, экономике: материалы 13-й Междунар. науч.-практ.
конф. Минск, 2015. Т. 1. С. 286–287.

4. The multiple team formation problem using sociometry / J. H. Gutierrez [et al.] // Computers and
Operations Research. 2016. Vol. 75. P. 150−162.

5. Masood Z., Hoda R., Blincoe K. Exploring Workflow Mechanisms and Task Allocation Strategies in
Agile Software Teams // Agile Processes in Software Engineering and Extreme Programming. XP 2017:
Lecture Notes in Business Information Processing / H. Baumeister, H. Lichter, M. Riebisch (eds). Springer, 2017.
Vol. 283. P. 267–273.

6. Прихожий А. А., Ждановский А. М. Метод оценки квалификации и оптимизация состава профес-
сиональных групп программистов // Системный анализ и прикладная информатика. 2018. № 2. С. 4−11.

7. Prihozhy A. A. Exact and greedy algorithms of allocating experts to maximum set of programmer
teams // System analysis and applied information science. 2022. No. 1. P. 40–46.

8. Prihozhy A., Zhdanouski A. Genetic algorithm of optimizing the size, staff and number of professional teams
of programmers // Open Semantic Technologies for Intelligent Systems. Minsk, BSUIR, 2019. P. 305–310.

9. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimizing the qualification of programmer
teams // System analysis and applied information science. 2020. No. 4. P. 31–38.

10. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms // System analysis and applied information science. 2021. No. 3. P. 40–50.

11. Prihozhy A. A. Optimization of programming teams on compatibility of programmers // Труды
БГТУ. Сер. 3, Физико-математические науки и информатика. 2023. № 2 (272). С. 104–110.

Information about the author
Prihozhy Anatoly Alexievich − DSc (Engineering), Professor, Professor, the Department of Computer

and System Software. Belarusian National Technical University (65, Nezalezhnasti Ave., 220013, Minsk,
Republic of Belarus). E-mail: prihozhy@yahoo.com

Информация об авторе
Прихожий Анатолий Алексеевич − доктор технических наук, профессор, профессор кафедры

программного обеспечения информационных систем и технологий. Белорусский национальный техничес-
кий университет (220013, г. Минск, пр. Независимости 65, Республика Беларусь). E-mail: prihozhy@yahoo.com

Received 07.12.2023

