Ероховец В. К., зав. лабораторией ОИПИ НАН Беларуси

КОНСТРУКТИВНАЯ ГЕОМЕТРИЯ ИДЕНТИФИКАТОРОВ ЗАЩИТНЫХ ФУРЬЕ-ГОЛОГРАММ

The article is devoted to development of the design theory for graph-analytic account and choice of geometrical parameters of identifies of the protective fourier-holograms

Введение. Голографическая защита документов и ценных бумаг, упаковки продуктов питания и промышленных товаров считается на сегодняшний день одним из самых труднодоступных для подделки методов [1]. Голографическая защита хоропіа тем, что является комплексной по своей сути. В одной голограмме могут сочетаться различные степени защиты, каждая из которых предназначена для своего уровня идентификации: от визуального (потребитель товара), до экспертного, с использованием специальной аппаратуры.

В целом голографические методы обеспечивают видимую и скрытую защиту от подделки. Видимая защита – это высококачественные голограммы, имеющие переливающиеся красочные изображения, воспринимаемые невооруженным глазом человека в солнечном или полихроматическом нерассеянном свете. При скрытой защите голограмма просматривается через специальный прибор (идентификатор) для визуализации и идентификации экспертом скрытого изображения.

Среди возможных подходов получения скрытых голографических изображений можно выделить метод записи и воспроизведения фурье-голограмм [2, 3], который характеризуется локализацией скрытого изображения и необходимостью использования лазерного света для его воспроизведения и идентификации. Одной из задач проектирования идентификаторов защитных голограмм является расчет и выбор геометрических параметров схем их записи и воспроизведения. Здесь интуитивные инженерные приемы не гарантируют оптимального решения задачи, а экспериментальное моделирование сопряжено с изготовлением сложного технологического оборудования и дорогостоящих макетов, занимает длительное время и не приводит к общему результату. Поэтому предоставляется целесообразным обращение к аналитическим методам оценки, основанным на математическом моделировании, и создание на этой основе графо-аналитической методики расчета конструкции дисплейной части идентификаторов. Рассмотрим возможности такого подхода, где в качестве основных выделены следующие геометрические параметры:

– размеры в продольном и поперечном направлениях, обеспечивающие требуемый формат воспроизводимого изображения;

 допуски на установку всех компонент схем записи и воспроизведения, обеспечивающих точность воспроизводимого масштаба и резкость изображения;

- объемные искажения, не нарушающие резкости в продольном и поперечном направлениях пространства воспроизводимых изображений.

Анализ объектного канала. Для определения параметров объектного канала записи защитных голограмм с их воспроизведением в произвольном масштабе рассмотрим когерентно-оптическую систему на рис. 1. Данная система состоит из объектива записи О, представленного на схеме тонкой линзой с фокусным расстоянием f, слева от которого на расстоянии nf размещен транспарант T с входным двумерным сигналом $s_{\rm Bx}(x, y)$. Слева от транспаранта на расстоянии mf от объектива находится точечный источник света с единичной амплитудой, освещающий расходящимся пучком Π_1 транспарант и объектив записи Си. Здесь n и m – рациональные числа, указывающие на относительные расстояния в сравнении с фокусным, от точечного источника света и транспаранта до объектива записи соответственно. В случае $m = \infty$ освещающий пучок Π_2 является коллимированным, а в случае m > 0 – сходящимся Π_3 .

Рис. 1. Схема объектного канала для записи голографических защитных элементов

Используя операторный метод расчета когерентно-оптических систем, выходное пространственное распределение светового поля [4] для любого из вариантов освещения транспаранта с точностью до амплитудного A(m, n, f) и фазового $\Lambda(x_2 y_2; m, n, f)$ множителей определяется так:

$$s_{\text{Bblx}}(x_2, y_2) = A(m, n, f) \Lambda(x_2, y_2; m, n, f) s_{\text{Bx}}(-x/M_{JI}, -y/M_{JI}),$$

где Мл – линейное увеличение оптической системы, определяемое по выражению

$$M_{\Pi} = |(n-1)^{-1}|. \tag{1}$$

Таким образом, в плоскости экрана Э формируется изображение входного сигнала $s_{BX}(x, y)$ в измененном масштабе. Вводя в плоскость $P_2 \{x_2, y_2\}$ когерентную подсветку опорным пучком с кривизной ~ R_{wo} и выполняя условия $R_{wo} \ge 10/M_n$, получаем голограмму сфокусированного изображения с линейной структурой интерференционных полос по всей ее апертуре $2lM_n$. Характеристики этой картины интерференционных полос позволяют осуществить запись 3–4 цветоделенных изображений объектов на один кадр с их хорошим дифракционным восприятием глазом человека в полихроматическом свете. По своей сути такая голограмма является базовым защитным элементом, который далее дополняется новыми степенями защиты.

Скрытые фурье-голограммы. При голографической записи скрытых изображений в ряде случаев оказывается предпочтительным выбор плоскости регистрации в пространстве $z \in \{O, R_{wo}\}$, где локализация объектного пучка света, строящего изображение, максимальна. Это, в свою очередь, определяет минимальные физические размеры голограммы и затрудняет их поиск и визуализацию.

Воспользуемся понятием информационной емкости входного сигнала $s_{\text{вх}}(x,y)$, определяемой как произведение линейного размера 2*l* одной из сторон транспаранта T на его высшую пространственную частоту v_{max} , и понятием плотности записи ρ , которая определяется отношением информационной емкости сигнала по одной координате $2lv_{\text{max}}$ к линейной апертуре d_H , через которую проходят все дифрагированные на транспаранте T пучки света:

$$C = 2lv_{max}, \ \rho = \frac{C}{d_H}.$$
 (2)

Анализ плотности записи будем выполнять относительно схемы с пучком П₁, где крайнему лучу света, освещающего транспарант, в пространстве предметов и изображений

соответствуют углы α и α' , а крайнему дифрагированному лучу – углы β и β' соответственно. Высоты, на которых преломляются указанные лучи в объективе О, обозначены соответственно через *H* и *h*. Согласно правилу знаков, углы α и β отрицательные.

В соответствии с анализом [4] для схемы на рис. 1 в произвольной плоскости на расстоянии *z* плотность записи в соответствии с выражением (2) равна

$$\rho = \left[1 + \frac{2\lambda_{W} \vee_{\max} n f}{d_{H}} - \frac{2z\lambda_{W} \vee_{\max} (n+1)}{d_{H}}\right] \frac{\vee_{\max} f(m-n)}{m f - z(m+n)}.$$

Выполняя операцию дифференцирования параметра ρ по отношению к z и приравнивая ее к нулю, определим минимальный размер голограммы d_H.

Таким образом, $d\rho / dz = 0$ при

$$d_H = 2\lambda_W f V_{\max} k_{\Gamma}, \qquad (3)$$

где геометрический коэффициент

$$k_{\Gamma} = \frac{m-n}{m+n}$$

учитывает линейное увеличение входного сигнала в оптическом канале, а также кривизну и знак кривизны волнового фронта пучков П₁–П₃ при соблюдении условия

$$z_{\text{opt}} = \frac{mf}{m+1}.$$
 (4)

Для схемы объектного канала с расположением транспаранта за объективом записи (рис. 2) по аналогии с рассмотренной выше схемой плотность записи можно оценить как

$$\rho = \left[1 - \frac{2(z - nf)\lambda_{W} \vee \max}{d_{H}}\right] \frac{\vee \max f(m - mn - n)}{mf - z(m + 1)}$$

Производная $d\rho/dz = 0$ при соблюдении условия (4) приводит к записи (3) для оценки d_H с геометрическим коэффициентом

$$k_{\Gamma} = \frac{m - mn - n}{m + n}.$$

Рис. 2. Схема объектного канала с расположением транспаранта за объективом записи

Волновой анализ каждой из практических схем объектного канала записей показывает [5], что в плоскости z_{opt} с точностью до амплитудного A(m, n, f) и фазового $A(x_z, y_z; m, n, f)$ множителей формируется фурье-спектр входного сигнала на транспаранте:

$$s(x_{z}, y_{z}) = A(m, n, f) \Lambda(x_{z}, y_{z}; m, n, f) \iint_{P[x, y]} s_{\theta x}(x, y) \exp\left[-j\frac{k}{fk_{\Gamma}}(x x_{z} + y y_{z})\right] dxdy.$$

При вводе в плоскость z_{opt} когерентной подсветки опорным пучком с диаметром d_H на защитном элементе записывается скрытая фурье-голограмма. Характерной особенностью такой голограммы является то, что она имеет малые размеры (менее 0,5–1 мм), локализована в любой части защитного элемента, на одном защитном элементе их может быть несколько и разных, все они могут быть по-разному закодированы и, наконец, все они воспроизводятся на просмотровом диффузном экране без применения какой-либо дополнительной оптики. Последнее свойство особенно важно для построения многоабонентных информационно-диагностических комплексов с простыми и дешевыми идентификаторами в их составе.

Масштаб воспроизводимых изображений. Исходя из условий (1) и (4), на рис. 3 иллюстрируется формирование фурье-голограммой ФГ увеличенных изображений с различным расположением транспаранта Т в предметной области. При 1 < n (см. рис. 3, а) и считывании фурье-голограммы копией опорного пучка с той же длиной волны света λ_R , что и при записи λ_W , дифрагированными пучками формируется перевернутое изображение транспаранта с измененным масштабом в плоскости экрана, который находится в пространстве изображений. При 0 < n < 1 (см. рис. 3, б) и считывании фурье-голограммы копией опорного пучка с $\lambda_R = \lambda_W$ формируется неперевернутое изображение транспаранта с измененным масштабом в пространстве предметов оптической системы. С учетом правил геометрической оптики в обоих случаях расстояние от фурье-голограммы до экрана оценивается выражением

$$R_{WO} = M_{\Pi} k_{\Gamma} f .$$

В случае расположения транспаранта за объективом записи воспроизведение фурьеголограммы возможно с линейным увеличением $M_{\pi} = 1$ только сопряженным или комплексно-сопряженным (для тонкой отражательной голограммы) пучком по отношению к коллимированному опорному пучку на этапе записи.

a)

Рис. 3. Линейное увеличение воспроизводимых изображений: а) вариант 1 < n < 2; б) вариант 0 < n < 1

б)

В случае $\lambda_R \neq \lambda_W$ и произвольной кривизны волновых фронтов световых пучков, участвующих при записи и считывании фурье-голограмм, расстояние до плоскости воспроизводимого изображения по осевой линии определяется выражением [6]

$$R_{I} = \left[\frac{1}{R_{R}} + \mu \left(\frac{1}{R_{WO}} - \frac{1}{R_{WR}}\right)\right]^{-1},$$

откуда дифракционное, или продольное, увеличение M_{A} оценивается отношением продольных размеров воспроизводимого информационного R_{I} и объектного R_{W0} пучков света:

$$M_{R} = \frac{R_{I}}{R_{WO}} = \left[\frac{R_{WO}}{R_{R}} + \mu \left(1 - \frac{R_{WO}}{R_{WR}}\right)\right]^{-1},$$
(5)

где $\mu = \lambda_R / \lambda_W$ и M_A задается в первую очередь соотношением кривизны опорного пучка R_{WR} при записи и считывающего пучка R_R при воспроизведении.

При использовании дифракционного изменения масштаба на практике из соображений конструктивной простоты системы записи-воспроизведения фурье-голограммы один из пучков света (опорный или считывающий) является коллимированным. Поэтому при $R_R = \infty$

$$M_{\mathcal{I}} = \left[\mu\left(1 - \frac{R_{WO}}{R_{WR}}\right)\right]^{-1},\tag{6}$$

$$R_{I} = \frac{R_{WO} R_{WR}}{\mu \left(R_{WR} - R_{WO} \right)}$$

Аналогично при $R_{WR} = \infty$

$$M_{\rm II} = \left[\mu \left(1 + \frac{R_{WO}}{R_{WR}}\right)\right]^{-1}$$

$$R_{I} = \frac{R_{WO} R_{R}}{\mu R_{R} + R_{WO}}$$

Большое число варьируемых переменных в выражениях (5)–(7) предполагает наличие множества схемных конфигураций. Некоторые из таких возможностей изменения масштаба иллюстрируются схемами на рис. 4.

Обязательным условием при анализе изменения параметров M_{π} и M_{π} для всех конфигураций схем записи-воспроизведения является применение правила знаков геометрической оптики, где знак «–» соответствует геометрическим отрезкам в пространстве $z \in \{0, -\infty\}$, а знак «+» – в пространстве $z \in \{0, \infty\}$.

При изменении длины волны света на этапе считывания угловой размер воспроизводимого изображения $2\alpha_I$ также претерпевает изменения в соответствии с выражением $\sin \alpha_I = \mu \sin \alpha_{wo}$ при условии, что $\sin \alpha_R = \mu \sin \alpha_{wR}$. Вводя интегральное определение углового увеличения

$$M_{\rm y} = \frac{\operatorname{tg} \alpha_I}{\operatorname{tg} \alpha_{WO}} = \frac{\operatorname{tg} \operatorname{arcsin}(\mu \sin \alpha_{WO})}{\operatorname{tg} \alpha_{WO}}$$
(8)

в соответствии со схемой на рис. 5, общее поперечное увеличение $M_{\Pi} = L / l$ определяется произведением

$$M_{\Pi} = M_{\Pi} M_{\Pi} M_{\mathbf{y}} . \tag{9}$$

(7)

Рис. 4. Дифракционное изменение масштаба при $R_R - \infty \mu = 1$: a, 6 – $M_{\mu} < 1$; в, г – $M_{\mu} > 1$

Рис. 5. Иллюстрация обобщенного поперечного увеличения, воспроизводимого с голограммы изображения

На рис. 6 представлены графики для экспресс-оценки линейного увеличения M_{Λ} (кривые 1 и 2) относительно дифракционного увеличения $M'_{\Lambda} = \mu M_{\Lambda}$ (кривые 1, 2 и 3), а также углового увеличения M_y (кривая 4 для случая $\alpha_{WO} = 15^{\circ}$). Здесь n_1 и n_2 – относительные расстояния :

$$n_1 = R_{WO} / R_{WR} , \qquad n_2 = R_{WO} / \mu R_R ,$$

в соответствии с чем выражения (4) и (5) приобретают вид

$$M_{\rm II} = \left[\mu \left(1 - n_1\right)\right]^{-1},\tag{10}$$

$$M_{\rm II} = \left[\mu \left(1 + n_2\right)\right]^{-1}.$$
 (11)

Из выражений (10) и (11), а также графиков на рис. 6 вытекает, что при $n_2 < 0$ или $n_1 > 0$ всегда $M_{\rm A} < 1$. При $n_2 > 0$ или $n_1 < 0$ имеет место увеличение. Причем для построения увеличенных действительных изображений необходимо соблюдать условия $|n_1| = |n_2| < 1$, нарушение которых приводит к исчезновению действительного изображения и формированию мнимого, в том числе уменьшенного при $|n_1| = |n_2| > 2$. Мнимое изображение в практических случаях просто трансформируется в действительное за счет считывания фурье-голограммы сопряженным пучком света.

Таким образом, проведенный анализ позволяет из множества схемных конфигураций выбирать варианты для максимального упрощения состава идентификаторов за счет использования лазеров с коллимированным выходным излучением и без применения вспомогательной оптики для достижения требуемого масштаба воспроизводимого скрытого изображения. Тем самым за счет незначительного усложнения системы записи оригиналматрицы скрытой фурье-голограммы достигается целевая функция обеспечения минимальной стоимости многоабонентных контрольно-диагностических комплексов с простыми и дешевыми идентификаторами в их составе.

Рис. 6. Зависимости линейного M_{Λ} , дифракционного M_{Λ} и углового M_{y} увеличений от относительных параметров n, n_{1}, n_{2} и μ

Точность воспроизводимого масштаба. Из системы уравнений (1) и (3)–(6) видно, что отклонение произвольного параметра в любой из составляющих приводит к появлению погрешности ΔM_{Π} в выражении (9):

$$M_{\Pi} + \Delta M_{\Pi} = (M_{\Pi} + \Delta M_{\Pi}) (M_{\Pi} + \Delta M_{\Pi}) M_{\rm y}.$$
(12)

Исключение составляет M_y в силу высокой частотной стабильности используемых в дисплеях идентификаторов лазерных источников. С учетом (9) выражение (12) можно переписать так:

$$\frac{\Delta M_{\Pi}}{M_{\Pi}} = \frac{\Delta M_{\pi}}{M_{\pi}} + \frac{\Delta M_{\pi}}{M_{\pi}} + \frac{\Delta M_{\pi}}{M_{\pi}} \cdot \frac{\Delta M_{\pi}}{M_{\pi}} \cdot \frac{\Delta M_{\pi}}{M_{\pi}} \cdot (13)$$

Дадим дифференциальную оценку отклонений в выражении (13). Для линейного увеличения

$$M_{\Pi} + \Delta M_{\Pi} = \left| \left(n - 1 + \Delta n \right)^{-1} \right|,$$

откуда при заданной относительной погрешности ΔM_{Λ} / M_{Λ} величина Δn не должна превышать

$$\Delta n = \left| \frac{\left(1 - n\right) \Delta M_{\Pi} / M_{\Pi}}{1 + \Delta M_{\Pi} / M_{\Pi}} \right|.$$
(14)

Графики зависимости (14) для практических значений n и $\Delta M_{\Lambda}/M_{\Lambda}$ представлены на рис. 7. Видно, что с увеличением M_{Λ} , т. е. при $n \rightarrow 1,0$ требования к точности установки транспаранта линейно возрастают.

Для случая дифракционного увеличения в соответствии с (6) при $R_R = \infty$

$$M_{\mathcal{A}} + \Delta M_{\mathcal{A}} = \frac{R_{WR} + \Delta R_{WR}}{\mu \left(R_{WR} - \Delta R_{WR} - R_{WO} \right)},$$

откуда

$$\frac{\Delta R_{WR}}{R_{WR}} = \frac{\left(R_{WR} / R_{WR} - 1\right) \Delta M_{\underline{A}} / M_{\underline{A}}}{R_{WO} / R_{WR} + \Delta M_{\underline{A}} / M_{\underline{A}}}\right)$$
(15)

Рис. 7. Зависимости допуска экспозиционирования транспаранта Δn от относительного расстояния: $n \{0; 0, 8\}$ и $n \{1, 2; 3, 0\}$ – сплошные кривые; $n \{0, 8; 1, 2\}$ – штриховые кривые

Аналогично при $R_{WR} = \infty$

$$\frac{\Delta R_R}{R_R} = \left| \frac{\left(R_{WO} / \mu R_R + 1 \right) \Delta M_{\Pi} / M_{\Pi}}{R_{WO} / \mu R_R - \Delta M_{\Pi} / M_{\Pi}} \right|.$$
(16)

С учетом малости второго слагаемого (от 0,001 до 0,05) в знаменателе выражений (15) и (16) эти записи можно представить так:

$$\frac{\Delta R_{WR}}{R_{WR}} = \frac{\Delta M_{\Pi}}{M_{\Pi}} \left| \frac{n_1 - 1}{n_1} \right|, \quad \frac{\Delta R_R}{R_R} = \frac{\Delta M_{\Pi}}{M_{\Pi}} \left| \frac{n_2 + 1}{n_2} \right|.$$

На рис. 8 приведены кривые для оценки допусков линейного позиционирования опорного и считывающего пучков без учета априори задаваемого ограничения $\Delta M_{\rm A} / M_{\rm A}$ на точность воспроизводимого формата.

Таким образом, если в задании известны требуемое M_{Π} и допустимое $\Delta M_{\Pi} / M_{\Pi}$, в соответствии с (12) определяется величина каждой составляющей ($\Delta M_{\Pi} / M_{\Pi}$, $\Delta M_{\Pi} / M_{\Pi}$) и по графикам на рис. 7 и 8 устанавливаются допуски на позиционирование транспаранта и точечных источников когерентного света в системах записи и считывания скрытых фурье-голограмм.

Рис. 8. Зависимости допуска позиционирования точечных источников света в опорном канале записи $\Delta R_{WR} / R_{WR}$ и считывания $\Delta R_{WR} / R_{WR}$ в зависимости от относительных расстояний: $n_1, n_2 \{0,2; 0,9\}$ и $n_1, n_2 \{1,1; 9,0\}$ – сплошные кривые; $n_1, n_2 \{0,8; 1,2\}$ – штриховые кривые

Заключение. Результатом представленной статьи является разработка основ конструктивной теории проектирования идентификаторов скрытых голограмм в части построения математических моделей управления масштабом воспроизводимых изображений и определения допусков на установку всех компонент схем записи-считывания по критерию обеспечения точности воспроизведения масштаба. В силу ограничения объема статьи вопросы оценки объемных искажений и резкости воспроизводимых изображений будут представлены в следующем номере сборника трудов.

ЛИТЕРАТУРА

1. Ероховец В.К., Танин Л.В. Голографическая защита документов и ценных бумаг// Издательско-полиграфический комплекс на пороге третьего тысячелетия: Материалы Международной научно-технической конференции/ БГТУ. – Минск, 2001. – С. 152–155.

2. Одиноков С.Б., Щербинин М.В. Анализ погрешности установки кодирующей маски в схемах получения плоских голограмм// Автометрия. – №2. – 2001. – С. 119–130.

3. Ероховец В.К. Синтез защитных голограмм со скрытыми изображениями// Анализ цифровых изображений/ ОИПИ НАН Беларуси. – Минск, 2002. Вып. 1. – С. 92–98.

4. Ероховец В.К. Влияние геометрии канала записи на информационные характеристики оптической памяти и среды. – Киев: Вища школа, 1987. Вып. 18. – С. 63–68.

5. Ярмош Н.А., Ероховец В.К., Борискевич А.А. О выборе плоскости регистрации микроголограмм// Известия АН БССР. Сер. физ.-тех. наук. – 1978. – № 3. – С. 91–96.

6. Ероховец В.К. Управление масштабом воспроизводимых изображений в голографической памяти// Фундаментальные основы оптической памяти и среды. – Киев: Вища школа, 1998. – Вып. 19. – С. 71–75.