УДК 537.622

А. А. Затюло, кандидат химических наук, ассистент (БГТУ); Л. А. Башкиров, доктор химических наук, профессор (БГТУ); Г. С. Петров, кандидат химических наук, доцент (БГТУ); А. И. Галяс, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению); И. А. Великанова, кандидат химических наук, доцент (БГТУ)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$

Методом твердофазных реакций синтезированы твердые растворы системы (1-x)ВiFeO₃ – xNdCoO₃. Установлены закономерности влияния изовалентного замещения в BiFeO₃ ионов Bi³⁺, Fe³⁺ ионами Nd³⁺, Co³⁺ на кристаллическую структуру, намагниченность и тепловое расширение образующихся твердых растворов Bi_{1-x}Nd_xFe_{1-x}Co_xO₃. Показано, что замещение до 2% ионов Bi³⁺, Fe³⁺ ионами Nd³⁺ и Co³⁺ в BiFeO₃ приводит лишь к частичному разрушению антиферромагнитного упорядочения магнитных моментов ионов Fe³⁺. По результатам исследования магнитных свойств установлено, что магнитные свойства образцов Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ (0,05 \le x \le 0,15) обусловлены сосуществованием в них антиферромагнитной и ферромагнитной фаз, а образцы Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ (0,80 \le x \le 1,0) являются парамагнитными.

Solid solutions of the (1-x)BiFeO₃ – xNdCoO₃ system were synthesized by a solid-state reactions method. Peculiarities of the influence of isovalent substitution in BiFeO₃ of Bi³⁺, Fe³⁺ ions by Nd³⁺, Co³⁺ ions on the crystal structure, magnetization and thermal expansion of the forming solid solutions Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ are fixed. It is shown that the substitution up to 2% of Bi³⁺, Fe³⁺ ions in BiFeO₃ by Nd³⁺, Co³⁺ ions leads only to the partial destruction of the antiferromagnetic ordering of the Fe³⁺ ions magnetic moments. According to the results of the magnetic properties investigation it is found that magnetic properties of the samples Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ (0,05 $\le x \le 0,15$) are due to the coexistence of the antiferromagnetic and ferromagnetic phases but the samples Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ (0,80 $\le x \le 1,0$) reveal paramagnetic properties.

Введение. В последние десятилетия значительно увеличилось число публикаций, посвященных синтезу и исследованию свойств сегнетомагнетиков (мультиферроиков). Связь между магнитной и электрической подсистемами в сегнетомагнетиках, проявляющаяся в виде магнитоэлектрических (МЭ) эффектов, предоставляет возможность с помощью электрического поля управлять магнитными свойствами материала и наоборот. Это позволяет разрабатывать на основе мультиферроиков принципиально новые устройства магнитной памяти и спинтроники, сенсоры магнитного поля, устройства записи и считывания информации и др. [1–5].

Одной из проблем практического использования мультиферроиков является поиск материалов, проявляющих МЭ-эффект при комнатной температуре. Феррит висмута BiFeO₃ проявляет как сегнетоэлектрическое, так и антиферромагнитное упорядочение (со слабым ферромагнитным вкладом) при комнатной температуре, что открывает широкие перспективы для его практического применения. Однако магнитоэлектрические взаимодействия в объемных образцах BiFeO₃ являются низкими, что обусловлено существованием сложной пространственно-модулированной спиновой структуры циклоидного типа. Это приводит к отсут-

ствию в таких фазах линейного МЭ-эффекта. Для разрушения несоразмерной магнитной структуры используют различные приемы: приложение сильного магнитного поля, замещение в феррите висмута либо ионов Ві³⁺, либо ионов Fe³⁺, изготовление тонких пленок BiFeO₃ и др. Однако для наблюдения МЭ-эффекта требуются очень высокие величины магнитного поля (~ 200 кЭ) [1, 2, 5], поэтому говорить о практическом применения такого материала достаточно сложно. Стоит также отметить, что результаты по получению гигантских значений МЭ-эффекта, обнаруженные на тонких пленках BiFeO₃, позже не подтвердились. В связи с этим наиболее перспективным направлением является замещение ионов в ВіГеО3.

Целью данной работы являлось установление закономерностей влияния изовалентного замещения в $BiFeO_3$ ионов Bi^{3+} ионами Nd^{3+} и ионов Fe^{3+} ионами Co^{3+} на кристаллическую структуру, намагниченность и тепловое расширение образующихся твердых растворов.

Методика эксперимента. Синтез поликристаллических образцов твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ (x=0;0,02;0,05;0,08;0,10;0,15;0,80;0,85;0,90;0,95;1,0) осуществлен методом твердофазных реакций из оксидов Bi_2O_3 , Fe_2O_3 , Nd_2O_3 и Co_3O_4 . Порошки исходных

соединений, взятых в заданных молярных соотношениях, смешивали и мололи в течение 30 мин в планетарной мельнице с добавлением этанола. Полученную шихту с добавлением этанола прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5-7 мм, которые затем обжигали при 800°C на воздухе в течение 8 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм². Условия синтеза на воздухе образцов данной системы в зависимости от состава варьировались в широких пределах: $T = 850-1250^{\circ}$ С и длительность от 30 мин до 8 ч. Чем больше ионов висмута замещено ионами редкоземельного элемента, тем выше была температура синтеза.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCE с использованием CuK_{α} -излучения.

Удельную намагниченность ($\sigma_{yд}$) полученных образцов при 7 и 300 К в полях до 14 Тл и удельную магнитную восприимчивость ($\chi_{yд}$) в магнитном поле 0,86 Тл в интервале температур 7–300 К измеряли вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd, London) и методом Фарадея в интервале температур 77–950 К в Научно-практическом центре НАН Беларуси по материаловедению.

Термическое расширение образцов исследовали на воздухе в интервале температур 300–1100 К при помощи кварцевого дилатометра в динамическом (скорость нагрева и охлаждения 3–5 К · мин⁻¹) режиме.

Результаты и их обсуждение. Результаты рентгенофазового анализа исследованных твердых растворов на основе феррита висмута представлены на рис. 1. Установлено, что при замещении в $BiFeO_3$ от 2 до 10 мол. % ионов Bi^{3+} ионами Nd^{3+} , а ионов Fe^{3+} ионами Co^{3+} образуется непрерывный ряд твердых растворов со структурой ромбоэдрически искаженного перовскита, о чем свидетельствует постепенное

уменьшение параметра a и увеличение угла α кристаллической решетки ромбоэдрически искаженного перовскита (табл. 1). Это связано с уменьшением эффективного ионного радиуса иона-заместителя $(r_{\text{Bi}}^{3+} = 1,20 \text{ Å} [6], r_{\text{Nd}}^{3+} =$ = 0,99 Å [6]) при одинаковом анионном окружении, при этом эффективные ионные радиусы ионов Fe^{3+} ($r_{\text{Fe}}^{3+} = 0.67 \text{ Å [6]}$) и Co^{3+} ($r_{\text{Co}}^{3+} = 0.64 \text{ Å [6]}$) практически одинаковы. При степенях замещения x = 0.15; 0.80; 0.85; 0.90; 0.95; 1.0 образуются твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ со структурой орторомбически искаженного перовскита. При этом ряд образцов твердых растворов содержал примеси ферритов Ві25 FeO39, Ві₂Fе₄O₉ и СоFе₂O₄. О невозможности получения BiFeO₃ без примесей соединений Bi₂₅FeO₃₉, Ві₂ Fe₄O₉ при взаимодействии оксидов висмута (III) и железа (III) свидетельствуют и многочисленные литературные данные [7–12].

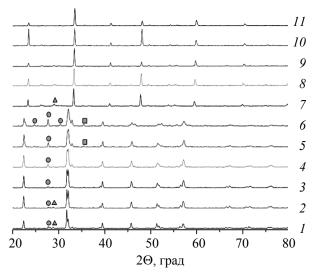


Рис. 1. Рентгеновские дифрактограммы образцов $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ при различных значениях x: I-0; 2-0,02; 3-0,05; 4-0,08; 5-0,10; 6-0,15; 7-0,80; 8-0,85; 9-0,90; <math>I0-0,95; I1-1,0; − $Bi_2Fe_4O_9;$ $\blacktriangle-Bi_25FeO_{39};$ $\blacksquare-CoFe_2O_4$

Таблица 1 Параметры кристаллической решетки твердых растворов ${\bf Bi_{1-x}Nd_xFe_{1-x}Co_xO_3}$

Степень замещения х	a, Å	b, Å	c, Å	Угол α, град.	V, Å ³	Структура
0	3,9650	_	_	89,437	62,324	R (R3c)
0,02	3,9624	_	_	89,494	62,205	R(R3c)
0,05	3,9590	_	_	89,522	62,048	R(R3c)
0,08	3,9555	_	_	89,529	61,880	R(R3c)
0,10	3,9527	_	_	89,568	61,752	R(R3c)
0,15	3,9482	3,9123	4,0332		62,299	O (Pnma)
0,80	5,3739	7,6152	5,3786		220,111	O (Pnma)
0,85	5,3695	7,5999	5,3615		218,791	O (Pnma)
0,90	5,3532	7,5820	5,3589		217,505	O (Pnma)
0,95	5,3456	7,5712	5,3522	_	216,618	O (Pnma)
1,0	5,3407	7,5653	5,3433	_	215,886	O (Pnma)

По мнению ряда авторов, образование примесных побочных продуктов Bi₂₅FeO₃₉, Ві₂ Fe₄O₉ происходит не только при твердофазном методе синтеза, но и при получении феррита висмута по золь-гель технологии [13]. Чтобы не допустить формирования Bi₂Fe₄O₉, прибегают к твердофазным реакциям с большим избытком Bi_2O_3 [14]. Однако и в этом случае присутствуют примеси антиферромагнитного Ві₂Fe₄O₉ и парамагнитного Ві₂₅FeO₃₉, которые не исчезают даже после дополнительной термообработки или посредством выщелачивания в разбавленной азотной кислоте [14].

По результатам исследования магнитных свойств твердых растворов на основе феррита висмута было показано, что в зависимости от концентрации замещающего иона образуются двухфазные в магнитном отношении твердые растворы. На зависимости удельной намагниченности $\sigma_{yд}$ от T для $BiFeO_3$ наблюдается резко выраженный максимум в точке перехода антиферромагнитного упорядочения магнитных моментов ионов Fe^{3+} в парамагнитное состояние, позволяющей определить температуру Нееля: $T_N \approx 617$ K (рис. 2).

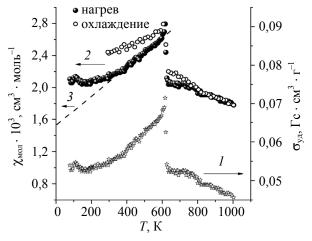


Рис. 2. Температурные зависимости удельной намагниченности $\sigma_{yд}$ (I) и молярной магнитной восприимчивости $\chi_{\text{мол}}$ (2) для BiFeO₃ в магнитном поле H = 0,86 Тл. Экстраполяция линейного участка уменьшения $\chi_{\text{мол}}$ от T до T = 0 K (3)

При 2%-ном замещении в BiFeO₃ ионов Bi³⁺ и Fe³⁺ ионами Nd³⁺ и Co³⁺ соответственно происходит лишь частичное разрушение антиферромагнитного упорядочения магнитных моментов ионов Fe³⁺. Об этом свидетельствует наличие аномалии в виде скачка на температурной зависимости удельной намагниченности, схожей с таковой для феррита BiFeO₃ (рис. 3, вставка). Температура Нееля для данного образца T_N = 593 К близка температуре Нееля феррита висмута T_N = 617 К. Следовательно, антиферромагнетизм твердого раствора $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ с x=0,02 может быть обусловлен именно присутствием в нем фазы $BiFeO_3$. При этом данные рентгенофазового анализа показывают изменение параметров кристаллической решетки при незначительном замещении ионов. Следовательно, замещение до 2% ионов Bi^{3+} , Fe^{3+} ионами Nd^{3+} и Co^{3+} приводит лишь к частичному разрушению антиферромагнитного упорядочения магнитных моментов ионов Fe^{3+} .

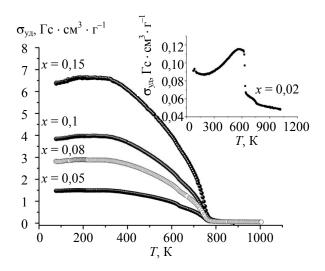
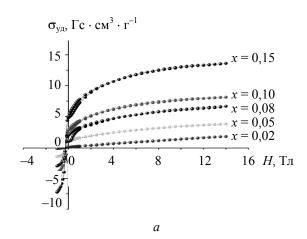


Рис. 3. Температурные зависимости удельной намагниченности $\sigma_{yд}$ для образцов ферритов-кобальтитов $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ при различной степени замещения x

С ростом степени замещения x от 0,05 до 0,15 в $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ происходит увеличение $\sigma_{v_{II}}$ (рис. 3), что может являться следствием структурного искажения при замещении в BiFeO₃ ионов Bi³⁺ ионами редкоземельных элементов с меньшим ионным радиусом, чем у ионов висмута, которое приводит к разрушению пространственно-модулированной спиновой структуры и появлению слабого ферромагнетизма. Подобное поведение также наблюдалось и у образцов $Bi_{1-x}Ln_xFe_{1-x}Co_xO_3$ ($Ln-La^{3+}$, Sm^{3+}) при $0.05 \le x \le 0.3$, описанных в работе [15–17]. Следует отметить, что твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ с x = 0.10 и 0.15 содержали примесь феррита кобальта СоFe₂O₄, который также может вносить вклад в ферромагнетизм данных образцов. Присутствие примесной фазы феррита кобальта сильно затрудняет интерпретацию магнитных свойств данных твердых растворов. При этом есть основание считать, что ферромагнетизм образцов Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ $(0,1 \le x \le 0,15)$ обусловлен не только присутствием ферромагнитной фазы CoFe₂O₄, но и слабым ферромагнетизмом основной фазы, поскольку температура Кюри T_c данных образцов (табл. 2) и феррита кобальта отличается на 20-50 К (для $CoFe_2O_4$ $T_c = 793$ K [18]), а во-вторых, даже в тех образцах, где данная примесь отсутствует, наблюдается увеличение удельной намагниченности (рис. 3).

Таблица 2 Температура Кюри (T_c) и удельная намагниченность при $T=300~{
m K}$ для ферритов-кобальтитов ${
m Bi}_{1-x}{
m Nd}_x{
m Fe}_{1-x}{
m Co}_x{
m O}_3$


Степень	Температура	$\sigma_{yд}$ при $T = 300$ K,
замещения х	Кюри T_c , К	$\Gamma c \cdot c m^3/\Gamma$
0,05	772	1,49
0,08	768	2,89
0,1	766	3,96
0,15	765	6,60

Следует сказать, что температурные зависимости удельной намагниченности для полученных образцов (рис. 3) характеризуются некоторыми аномалиями, не присущими ферромагнетикам: наличием размытого максимума на зависимостях $\sigma_{v_{\text{M}}}$ от T в интервале температур 200-350 К, где удельная намагниченность не увеличивается, а снижается при уменьшении температуры; а также существованием при температуре ≈ 620 К небольшой аномалии, совпадающей с температурой Нееля для феррита BiFeO₃. Данные обстоятельства свидетельствуют о том, что в этих образцах, кроме ферромагнитной, присутствует также и антиферромагнитная фаза. Следовательно, в образцах $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$, у которых зависимости $\sigma_{v\pi}$ от T имеют вышеуказанные особенности, замещение до 15% ионов Bi^{3+} , Fe^{3+} ионами Nd³⁺, Co³⁺ в двух катионных подрешетках BiFeO₃ не приводит к полному разрушению антиферромагнитного упорядочения магнитных моментов ионов Fe³⁺ в базовом соединении BiFeO₃.

Полученные полевые зависимости удельной намагниченности (рис. 4) показали наличие самопроизвольной и остаточной намагниченности (табл. 3), что также подтверждает присутствие ферромагнитной фазы как в образцах $\mathrm{Bi}_{1-x}\mathrm{Nd}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ с x=0.05; 0.08, в которых отсутствует примесь феррита кобальта $\mathrm{CoFe}_2\mathrm{O}_4$, так и в образцах с x=0.10; 0.15, в которых эта ферромагнитная фаза присутствует.

Таким образом, анализ температурных и полевых зависимостей удельной намагниченности для образцов $\mathrm{Bi}_{1-x}\mathrm{Nd}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ (0,05 \leq x \leq 0,15) показывает, что их магнитные свойства определяются сосуществованием в них антиферромагнитной и ферромагнитной фаз.

Полевые зависимости удельной намагниченности для ферритов-кобальтитов $\mathrm{Bi}_{1-x}\mathrm{Nd}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ с x=0,80; 0,90 и 1,00 при температуре 300 К (рис. 5, δ) показывают, что при увеличении напряженности магнитного поля до 14 Тл удельная намагниченность образцов увеличивается линейно.

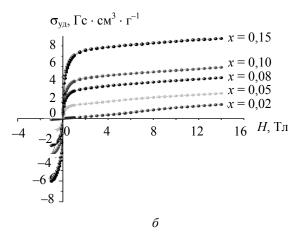


Рис. 4. Зависимость удельной намагниченности ($\sigma_{yд}$) от напряженности магнитного поля (H) при температурах 5 К (a) и 300 К (δ) для образцов $\mathrm{Bi}_{1-x}\mathrm{Nd}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ ($0,05 \leq x \leq 0,15$) при различной степени замещения x

Таблица 3 Величины самопроизвольной удельной намагниченности (σ_0) и удельной намагниченности в магнитном поле 14 Тл (σ_{14}), удельной остаточной намагниченности (σ_r) при 7 и 300 К для $\mathbf{Bi}_{1-x}\mathbf{Nd}_x\mathbf{Fe}_{1-x}\mathbf{Co}_x\mathbf{O}_3$

Состав		7 K	300 K		
	σ_0	σ ₁₄ , Гс · см³/г	σ_r , $\Gamma c \cdot cm^3/\Gamma$	σ ₀ , Гс∙см³/г	σ ₁₄ , Гс · см³/г
0,02	0,2	1,8	0,02	0,3	1,4
0,05	2,4	3,8	1,0	1,5	2,4
0,08	4,8	6,7	2,0	2,9	3,9
0,10	6,5	8,1	2,8	3,9	4,9
0,15	11,3	13,6	5,0	6,6	7,7

При температуре 5 К в полях выше 2 Тл (рис. 5, a) наблюдается тенденция к выходу намагниченности на насыщение. При этом для образцов с x = 0.8; 0,9; 1,0 в полях 2–12 Тл наблюдается магнитный гистерезис, свидетельствующий

о наличии фазы со свойствами слабого ферромагнетика, однако при уменьшении магнитного поля от 14 Тл до нуля остаточная удельная намагниченность отсутствует.

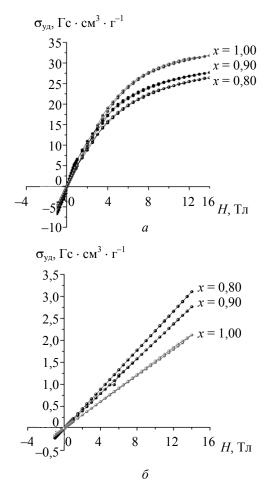


Рис. 5. Зависимость удельной намагниченности ($\sigma_{y,x}$) от напряженности магнитного поля (H) при температурах 5 К (a) и 300 К (δ) для образцов Ві $_{1-x}$ Nd $_x$ Fe $_{1-x}$ Co $_x$ O $_3$ при различной степени замещения x

Для получения дополнительной информации о возможности дальнейшего практического использования полученных образцов системы (1-x)BiFeO₃ – xNdCoO₃ были проведены дилатометрические исследования. Показано, что для твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ с незначительным замещением ионов висмута и железа зависимости относительного удлинения от температуры являются практически линейными (рис. 6, а). При увеличении концентрации ионовзаместителей температурные зависимости относительного удлинения образцов Bi_{1-x}Nd_xFe_{1-x}Co_xO₃ $(0.80 \le x \le 1.0)$ становятся нелинейными (рис. 6, б). Показано, что величина коэффициента линейного теплового расширения образцов $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ в области температур 400-1000 К при увеличении степени замещения x постепенно увеличивается: от 11,8 · 10⁻⁶ K⁻¹

для $BiFeO_3$ до $34,1 \cdot 10^{-6} \ K^{-1}$ для $NdCoO_3$, что, возможно, обусловлено переходом ионов кобальта из низкоспинового в промежуточно- и высокоспиновое состояние.

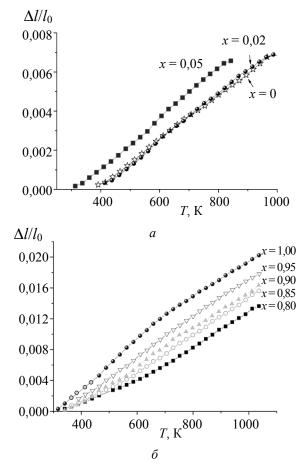


Рис. 6. Температурная зависимость относительного удлинения $\Delta l/l_0$ для образцов $\mathrm{Bi}_{1-x}\mathrm{Nd}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ при различной степени замещения x

Заключение. Методом твердофазных реакций синтезированы твердые растворы системы (1-x)ВiFeO₃ – xNdCoO₃. Установлено, что ромбоэдрическая фаза устойчива при степени замещения $x \le 0,1$, а при дальнейшем увеличении концентрации ионов-заместителей твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ имеют орторомбически искаженную структуру перовскита. В результате проведенных исследований магнитных свойств $Bi_{1-x}Nd_xFe_{1-x}Co_xO_3$ показано, что образцы $(0.05 \le x \le 0.15)$ в магнитном отношении являются неоднородными; в них сосуществуют как ферромагнитная, так и антиферромагнитная фазы, и они являются сегнетомагнитными материалами, перспективными для практического использования в различных областях науки и техники. Таким образом, выявлен характер влияния природы и концентрации замещающих ионов на кристаллическую структуру, магнитные свойства и тепловое расширение образующихся

твердых растворов, что позволит получать функциональные материалы с заданными свойствами.

Работа выполнена в рамках задания 1.02 ГПНИ «Функциональные и композиционные материалы и технологии, наноматериалы и нанотехнологии в современной технике».

Литература

- 1. Пятаков А. П., Звездин А. К. Магнитоэлектрические материалы и мультиферроики // Успехи физических наук. 2012. Т. 182, № 6. С. 593–620.
- 2. Catalan G., Scott J. F. Physics and Applications of Bismuth Ferrite // Advanced Materials. 2009. Vol. 21. P. 2463–2485.
- 3. Khikhlovskyi V. V. The renaissance of multiferroics: bismuth ferrite (BiFeO₃) a candidate multiferroic material in nanoscience. 2010. URL: http://www.rug.nl/zernike/education/ topmasternanoscience/NS190Khikhlovskyi.pdf (дата обращения: 22.03.2012).
- 4. Макоед И. И. Получение и физические свойства мультиферроиков: монография. Брест: БрГУ, 2009. 181 с.
- 5. Пятаков А. П. Магнитоэлектрические и флексомагнитоэлектрические эффекты в мультиферроиках и магнитных диэлектриках: дис. ... д-ра физ.-мат. наук: 01.04.11. Москва, 2013. 212 с.
- 6. Шаскольская М. П. Кристаллография. М.: Высш. шк., 1976. 391 с.
- 7. Диаграммы состояния силикатных систем. Справочник. Выпуск первый. Двойные системы / Н. А. Торопов [и др.]. Л.: Наука, 1969. 822 с.
- 8. Achenbach G. D., James W. J., Gerson R. Preparation of single-phase polycrystalline BiFeO₃ // J. Am. Ceram. Soc. 1967. V.50. P.437.
- 9. Maître A., François M., Gachon J. C. Experimental Study of the Bi₂O₃–Fe₂O₃ Pseudo-Binary System // J. Phase Equilibria and Diffusion. 2004. V. 25, No. 1. P. 59–67.

- 10. Особенности образования BiFeO $_3$ в смеси оксидов висмута и железа (III) / М. И. Морозов [и др.] // Журнал общей химии. 2003. Т.73, вып. 11. С. 1772-1776.
- 11. Оптические свойства керамики $BiFeO_3$ в диапазоне частот 0,3-30 THz / Γ . А. Командин [и др.] // Физика твердого тела. 2010. Т. 52, вып. 4. С. 684–692.
- 12. Reaction pathways in the solid state synthesis of multiferroic BiFeO₃ / M. S. Bernardo [et al.] // J. Eur. Ceram. Soc. 2011. Vol. 31. P. 3047–3053.
- 13. Carvalho T. T., Tavares P. B. Synthesis and thermodynamic stability of multiferroic BiFeO₃ // Mater. Letters. 2008. V. 62. P. 3984–3986.
- 14. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO₃ single crystals / D. Lebeugle [et al.] // Phys. Rev. B. 2007. V. 76. P.024116-1-024116-8.
- 15. Затюпо А. А. Физико-химические свойства твердых растворов на основе феррита висмута и кобальтитов, галлатов лантана, самария со структурой перовскита: дис. ... канд. хим. наук: 02.00.21, 02.00.04. Минск, 2013. 190 с.
- 16. Пилейко С. В., Затюпо А. А., Башкиров Л. А. Кристаллическая структура и магнитные свойства твердых растворов ферритов-кобальтитов $\mathrm{Bi}_{1-x}\mathrm{Sm}_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ // Физика конденсированного состояния: материалы XXI Междунар. науч.-практ. конф. аспир., магистр. и студ. (Гродно, 18–19 апр. 2013 г.) / ГрГУ им. Я. Купалы [и др.]; редкол.: Г.А. Хацкевич (гл. ред.) [и др.]. Гродно: ГрГУ, 2013. С. 118–120.
- 17. Кристаллическая структура и магнитные свойства твердых растворов $\mathrm{Bi}_{1-x}Ln_x\mathrm{Fe}_{1-x}\mathrm{Co}_x\mathrm{O}_3$ ($Ln-\mathrm{La}^{3+}$, Nd^{3+} , Sm^{3+}) / А. А. Затюпо [и др.] // Молодежь в науке 2013: материалы X Междунар. науч. конф. молодых ученых, Минск, 19–22 нояб. 2013 г. Минск, 2013. С.723–727.
- 18. Смит Я., Вейн Х. Ферриты. М.: Изд-во иностранной литературы, 1962. 504 с.

Поступила 03.03.2014