УДК 539.19

Д. И. Волкович, младший научный сотрудник (Институт физики им. Б. И. Степанова НАН Беларуси);

В. А. Кузьмицкий, доктор физико-математических наук, ведущий научный сотрудник (Командно-инженерный институт МЧС Республики Беларусь);

К. Н. Соловьев, член-корреспондент, доктор физико-математических наук, главный научный сотрудник (Институт физики им. Б. И. Степанова НАН Беларуси)

ЭЛЕКТРОННО-ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ТЕТРАПИРРОЛЬНЫХ СОЕДИНЕНИЙ: КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ МЕТОДОМ INDO/Sm

В рамках метода INDO/S для родоначальников ряда тетрапирролов — молекул порфина и Мg-порфина — проведено варьирование и одноэлектронных, и двухэлектронных интегралов, на основании чего предложен его вариант, INDO/Sm. Методом INDO/Sm рассчитаны электронные спектры фундаментальных тетрапиррольных структур (хлорин, бактериохлорин, тетраазапорфин и др.); показано, что энергии *Q*-уровней согласуются с экспериментальными с погрешностью ~300–700 см⁻¹, в то время как в расчетах INDO/S она составляет ~3000 см⁻¹. Методом INDO/Sm выполнены расчеты нескольких рядов тетрапиррольных соединений: аналогов фталоцианина с пятичленными гетероароматическими циклами, фенилзамещенных порфиразинов, аналогов бактериохлорофилла и др. Полученные результаты совместно с экспериментальными данными позволили установить существенные спектрально-структурные корреляции.

We have undertaken variation of the parameters of the INDO/S method for both one-electron and two-electron integrals when performing the quantum-chemical calculations on porphin and Mg porphin molecules, and proposed a modified parameterization, INDO/Sm. Using the INDO/Sm method, we calculated the electronic spectra of tetrapyrrole fundamental structures, including chlorin, bacteriochlorin, tetraazaporphin, and results for the energy of *Q* levels are consistent with the experimental data with an accuracy of ca. 300–700 cm⁻¹, whereas the INDO/S calculation accuracy is ca. 3000 cm⁻¹. In the framework of the INDO/Sm method, we have carried out extensive calculations of several series of tetrapyrrole compounds, in particular, phthalocyanine analogues with five-membered heteroaromatic rings, phenyl substituted porphyrazines, bacteriochlorophyll analogues and others. The results obtained, together with experimental data, enabled establishing significant spectral-structural correlations.

Анализ результатов расчетов возбужденных электронных состояний. Сравнение результатов квантово-химических расчетов молекул тетрапирролов как полуэмпирическими, так и неэмпирическими и DFT/TDDFT-методами с экспериментальными данными показывает, что между ними имеется ряд существенных расхождений, в том числе для родоначальника ряда — молекулы порфина ($H_2\Pi$) (см. [1] и цитированную там литературу):

- 1. Энергия уровней Q_x и Q_y систематически занижена, погрешность составляет $\delta E_Q \sim 3000~{\rm cm}^{-1}$. Энергия уровней B_x и B_y систематически завышена. Примерно в 4 раза завышена сила осциллятора переходов $G \to B_x$ и $G \to B_y$ (G основное состояние). Приближение случайных фаз улучшает характеристики B-состояний, но энергия Q-состояний оказывается заниженной еще в большей мере.
- 2. Конфигурационный состав пары Q-состояний и пары B-состояний определяется главным образом электронными конфигурациями четырехорбитальной модели a_ub_{3g} , a_ub_{2g} , $b_{1u}b_{3g}$, $b_{1u}b_{2g}$. Вклад конфигураций a_ub_{3g} и $b_{1u}b_{2g}$ слиш-

ком велик для состояния N_x , из-за чего сила осциллятора перехода $G \to N_x$ чересчур велика. Положение центра тяжести уровней B_x , B_y , N_x завышено — $\delta E_{\rm Cope} \sim 3500~{\rm cm}^{-1}$. В то же время экспериментально полоса Соре ${\rm H_2\Pi}$ по сравнению с магниевым комплексом (MgП) не претерпевает радикальных изменений, а полоса Соре тетрабензопорфина расщеплена только на две компоненты.

Аналогичные недостатки имеют место и для молекулы $Mg\Pi$.

Параметризация INDO/Sm. В связи с вышесказанным в работе [1] нами проведены обширные расчеты молекул $H_2\Pi$ и MgП при варьировании параметров метода INDO/S. Их цель состояла в нахождении параметризации, которая позволила бы достичь улучшенного согласия расчетных данных с экспериментальными и была бы пригодной для описания электронных спектров других молекул рассматриваемого класса.

В полуэмпирических методиках часть матричных элементов оценивается на основе экспериментальных данных, а часть подгоняется.

К числу последних относятся недиагональные матричные элементы одноэлектронного гамильтониана $H_{\mu\nu}$ и интегралы электрон-электронного взаимодействия $\gamma_{\mu\nu}$ как функции межядерного расстояния R_{AB} . В методе INDO/S $H_{\mu\nu}$ определяются следующим образом:

$$H_{\mu\nu} = (\beta_A^0 + \beta_B^0) / 2 \cdot (\alpha_1 k_\sigma S_{\mu\nu}^\sigma + \alpha_2 k_\pi S_{\mu\nu}^\pi), (1)$$

где β_A^0 , β_B^0 – атомные параметры; α_1 , α_2 – ориентационные множители; $S_{\mu\nu}^{\sigma}$, $S_{\mu\nu}^{\pi}$ – интегралы перекрывания АО по σ - или π -типу; k_{σ} , k_{π} – параметры, стандартные значения которых: $k_{\pi}=0,585$, $k_{\sigma}=1,287$. Интегралы $\gamma_{\mu\nu}$ в методе INDO/S задаются формулой Нишимото – Матага, которую можно представить в виде

$$\gamma_{uv}(R_{AB}) = C \gamma_W / (C \gamma_W a_{uv} f_1 + R_{AB} f_2),$$
 (2)

где $C=27,2098\cdot 0,529177$ эВ; $\gamma_W=1,2$; $a_{\mu\nu}=[(\gamma_{\mu\mu}+\gamma_{\nu\nu})/2]^{-1}$; $\gamma_{\mu\nu}$ выражены в электронвольтах (эВ), R_{AB} – в ангстремах (Å). В исходной формуле Нишимото – Матага $\gamma_W=f_1=f_2=1$.

Молекулы $H_2\Pi$ и Mg Π . В большей части расчетов проводилось варьирование параметра π -электронного перекрывания k_π и факторов f_1 и (или) f_2 . Оказалось, что изменение только k_π ответственно за сдвиг уровней Q, B и N в одну и ту же сторону и положение центра тяжести Q- и B-уровней \overline{E}_{BQ} линейно зависит от k_π . Изменение f_1 при фиксированных значениях k_π оказывает влияние в первую очередь на расщепление $\delta E_{BQ} = (E_{By} + E_{Bx} - E_{Oy} - E_{Ox}) / 2$.

Полученные зависимости интерпретированы на основе результатов применения теории возмущений (ТВ) к нижним возбужденным состояниям молекул класса порфиринов [2], особенности которых, как показано, определяются рамками четырехорбитальной модели и действием двух возмущений $\Delta \hat{H}^1$ и $\Delta \hat{H}^2$. Оператор $\Delta \hat{H}^{\text{I}}$ описывает отклонение двухэлектронного взаимодействия от хартри-фоковского у «невозмущенной» молекулы симметрии D_{4h} , а одноэлектронный оператор $\Delta \hat{H}^2$ задается возмущением, отвечающим переходу к рассматриваемой, «возмущенной» молекуле в соответствии с изменением структурных факторов, воздействия окружения, внешних полей и т. п. В нулевом порядке ТВ в таком подходе энергия четырех уровней Q и B почти одинакова. Поэтому в простой теории Хюккеля E_{BQ} будет определяться резонансным интегралом β, а в полуэмпирических аналогах метода ССП матричными элементами вида (1); в итоге E_{BO} должна линейно зависеть от k_{π} . Учет двухэлектронного оператора $\Delta \hat{H}^1$ приводит к «расталкиванию» δE_{BO} пар Q- и B-уровней относительно E_{BQ} , тем самым δE_{BQ} зависит от интегралов электрон-электронного взаимодействия $\gamma_{\mu\nu}$.

Для $H_2\Pi$ расчет энергий (приведено в 10^3 см $^{-1}$) с $k_\pi=0,680,\,f_1=2,0,\,f_2=1,0$ дает: $E_{Qx}=16,3$ (16,3), $E_{Oy}=19,5$ (19,3), $E_{Bx}=25,3$ (25,0), $E_{By}=25,7$ (25,7) для $Mg\Pi$: $E_O=18,5$ (17,3), $E_B=27,1$ (24,4); для $Mg\Pi$ с $k_\pi=0,635,\,f_1=2,1,\,f_2=1,0$ получено $E_Q=17,4$ (17,3), $E_B=25,7$ (24,4) (в скобках данные эксперимента). Полученые результаты свидетельствуют о гораздо лучшем соответствии эксперименту данных INDO/Sm, чем вышеупомянутых данных INDO/Sm, чем вышеупомянутых данных полуэмпирических методов и методов ab initio или DFT/TDDFT.

В работах [1, 3–7] метод INDO/Sm применен для расчетов нескольких рядов тетрапиррольных соединений. Основные результаты можно суммировать следующим образом.

Фундаментальные тетрапиррольные структуры [1].

- 1. Для молекулы хлорина, так же как и для молекулы $H_2\Pi$, предпочтительно сопоставление полосе Соре только двух электронных переходов $G \to B_y$ и $G \to B_x$ с близкой энергией.
- 2. Последовательность уровней Q_x , Q_y , B_y , B_x молекулы бактериохлорина (H₂БX) находится в соответствии с предсказаниями ТВ [2] и поляризационными данными флуоресценции, и она отлична от последовательности Q_x , Q_y , B_x , B_y у молекулы H₂ Π .
- 3. Переход от молекулы $H_2\Pi$ к молекуле тетраазапорфина или порфиразина ($H_2\Pi A$) сопровождается «перекачкой» интенсивности от переходов $G \to B_x$, $G \to B_y$ к переходам $G \to N_x$, $G \to N_y$, что соответствует «размытой» полосе Соре, у которой более отчетливый максимум расположен в коротковолновой стороне.

Производные $H_2\Pi$ и $H_2\Pi A$ с аннелированным пятичленным гетероароматическим циклом (ряды с гетероатомами N, O, S) [3].

- 1. Аннелирование пятичленных циклов к пиррольному кольцу $H_2\Pi$ (NH-изомеры типа \underline{b}) ведет к расширению главного пути сопряжения от 18-членного циклополиена к 21-членному. У производных $H_2\Pi$ с аннелированием к пирролениновому кольцу (NH-изомеры типа \underline{a}) и для обоих NH-изомеров \underline{a} и \underline{b} у производных $H_2\Pi$ A соответственно 18- и 16-членный циклополиены изолированы от 5-членных колец с шестью π -электронами. Симметрия центральной части молекул близка к D_{2h} .
- 2. Электронные спектры поглощения на границе видимой и УФ-области у изомеров \underline{a} производных $H_2\Pi$ определяются интенсивными переходами $G \to B_x$ и $G \to B_y$, а в случае $H_2\Pi A -$ в этой же области актуальны переходы $G \to B_x$, $G \to B_y$, $G \to N_x$ и $G \to N_y$.

Магниевый комлекс Mg-1,4-диазепинотрибензопорфиразина [4].

- 1. Энергия основного состояния у изомеров 6H и 1H (различие по положению атома водорода у диазепинового фрагмента) невелико, т. е. возможна таутомерия.
- 2. Согласие с экспериментом для энергий Q-уровней (приведено $10^3~{\rm cm}^{-1}$) лучше для геометрии, полученной методом DFT, чем для геометрии, полученной методом PM3.

PM3:
$$E_{Q1}=13,9,\,E_{Q2}=15,2,\,\Delta E_{Q2Q1}=1,3;$$

DFT: $E_{Q1}=14,9,\,E_{Q2}=15,6,\,\Delta E_{Q2Q1}=0,7;$
Эксп.: $E_{Q1}=14,5,\,E_{Q2}=15,3,\,\Delta E_{Q2Q1}=0,8.$

Фенилзамещенные порфиразины с халькогенсодержащим гетероциклом [5, 6].

- 1. Геометрическая структура основного состояния молекул MgП, MgПA, MgПA Φ_8 , Mg $\{SN_2\}\Pi A$, Mg $\{SN_2\}\Pi A\Phi_6$ (Φ фенил, $\{SN_2\}$ символическое обозначение гетероцикла) и соответствующих свободных оснований получена на основе метода DFT.
- 2. Для области полосы Соре энергии переходов и распределение их интенсивностей существенным образом зависят от двугранного угла γ между фенильными кольцами и порфиразиновым макроциклом. Расчеты при $\gamma = 60^{\circ}$ позволяют с точностью $\sim\!2000{-}3000$ см $^{-1}$ сделать отнесение полос в наблюдаемых спектрах поглощения и поляризационных спектрах флуоресценции.

Аналоги бактериохлорофилла [7]. Для выяснения факторов формирования наблюдаемого батохромного сдвига $\delta E_{O1} \cong -300 \text{ см}^{-1}$ длинноволновой полосы бактериохлорофилла относительно бактериофеофитина а (что существенно для поиска потенциальных фотосенсибилизаторов для фотодинамической терапии) рассмотрены свободные основания Н₂БХ, тетраазабактериохлорина (Н2ТАБХ) и их магниевых комплексов (MgБX и MgТАБX). Для пар Н2БХ, МдБХ и Н2ТАБХ, МдТАБХ детально проанализирован вклад одноэлектронных и двухэлектронных взаимодействий в сдвиг полосы Q_x . Показано, что батохромный сдвиг у пар тетрагидропроизводных обусловлен уменьшением орбитальной энергетической щели между нижней вакантной МО и верхней заполненной МО. При этом для обоих пар H_2 БХ, MgБХ и H_2 ТАБХ, МgTAБХ одноэлектронный сдвиг орбитальных уровней велик; двухэлектронные вклады — как в энергию электронных конфигураций, так и за счет наложения конфигураций — оказывают компенсирующее «гипсохромное» действие. В итоге результирующий сдвиг δE_{Qx} для пар ${\rm H}_2{\rm Б}{\rm X}$, MgБX и ${\rm H}_2{\rm TA}{\rm Б}{\rm X}$, MgTAБX составляет соответственно $\delta E_{Qx} = -260$ и $\delta E_{Qx} = -150$ см $^{-1}$. В целом рассчитанные электронные спектры рассмотренных молекул на количественном уровне согласуются с экспериментальными спектрами поглощения.

Литература

- 1. Кузьмицкий В. А., Волкович Д. И. Расчет электронного спектра порфина и его производных модифицированным методом INDO/S // ЖПС. 2008. Т. 75. С. 28–35.
- 2. Кузьмицкий В. А. Переходы в нижние синглетные и триплетные состояния молекул порфиринов: подход на основе теории возмущений и орбиталей ССП. Минск, 1988. 54 с. (Препринт / Акад. наук БССР, Ин-т физики; $N \ge 518$).
- 3. Волкович Д. И., Кузьмицкий В. А., Стужин П. А. Расчеты модифицированным методом INDO производных порфина и порфиразина с аннелированным пятичленным гетероароматическим циклом // ЖПС. 2008. Т. 75. С. 606–622.
- 4. Электронная структура и флуоресценция молекул Mg(II)-комплекса 1,4-диазепинотрибензопорфиразина / Кнюкшто В. Н. [и др.] // ЖПС. 2009. Т. 76. С. 365–375.
- 5. Porphyrazines with annulated chalcogen-containing heterocycle: study of spectral-luminescence properties and quantum-chemical calculations of the excited electronic states / Solovyov K. N. [et al.] // Macroheterocycles / Макрогетероциклы. 2010. Т. 3. С. 51–62.
- 6. Люминесценция и электронная структура молекул фенилзамещенных Mg-порфиразинов с аннелированным халькогенсодержащим гетероциклом / Кнюкшто В. Н. [и др.] // Оптика и спектр. 2012. Т. 113. С. 401–417.
- 7. Расчет электронной структуры и спектров молекул аналогов бактериохлорофилла / Волкович Д. И. [и др.] // ЖПС. 2011. Т. 78. С. 171–180.

Поступила 05.03.2014