УДК 539.213.2

В. К. Долгий, кандидат физико-математических наук, ассистент (БГТУ); А. Е. Почтенный, кандидат физико-математических наук, доцент (БГТУ)

МОДЕЛИРОВАНИЕ АДСОРБЦИОННО-РЕЗИСТИВНОГО ОТКЛИКА В СЕНСОРНЫХ СЛОЯХ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ

Предложенная теоретическая модель адсорбционно-резистивного отклика примесного органического полупроводника при сопоставлении с экспериментальными данными позволила установить механизм сенсорного отклика на диоксид азота пленок ионно-легированного фталоцианина меди. Показано, что ионно-имплантированная примесь увеличивает сенсорный отклик, если электронные состояния этой примеси располагаются по шкале энергий ниже собственных, а состояния регистрируемого газа – между собственными и состояниями ионно-имплантированной примеси. Установлено, что максимальный сенсорный отклик наблюдается при концентрации ионно-имплантированной примеси, соответствующей переходу от собственной к примесной проводимости примесного органического полупроводника.

The proposed theoretical model of adsorption-resistive response of organic impurity in semiconductors, when compared with experimental data, allowed to establish the mechanism of the touch response to nitrogen dioxide films of ion-doped copper phthalocyanine. It is shown that the ion-implanted impurity increases touch response, if the electronic states of the impurity distribution rely on the energy scale below their own, and the state of the recorded gas – between its own states and ion-implanted impurity. Found that the maximum touch response observed at a concentration of ion-implanted impurity corresponding to the transition from private to extrinsic impurity organic semiconductor.

Введение. Многие органические полупроводники, например металлфталоцианины [1], под воздействием газовой среды изменяют свои электрофизические характеристики, в частности удельную проводимость, что позволяет использовать пленки таких материалов как чувствительные элементы сенсоров газового анализа. Чувствительность этих сенсоров во многом определяется их исходными электрическими и сорбционными свойствами, которые могут быть оптимизированы ионно-лучевой обработкой [2]. Ионное легирование вызывает не только изменение проводимости пленок фталоцианинов в вакууме, но и изменения адсорбционно-резистивного отклика пленок на присутствие адсорбируемого газа.

Целью данной работы является выяснение механизма влияния примеси (например, ионноимплантированной) на чувствительность сенсорных слоев органических полупроводников.

Основная часть. На рис. 1 представлена кинетика сенсорного отклика пленок фталоцианина меди на подложках из диоксида кремния с нагревателем, терморезистором и двумя системами электродов растрового типа, которые имплантировались ионами платины с энергией 15 кэВ в интервале доз от 10^{12} до 10^{13} см⁻² на диоксид азота при температуре 80° С.

Как показывает рис. 1, ионная имплантация увеличивает относительную чувствительность пленок фталоцианина при малых дозах ионноимплантированной примеси. По мере увеличения дозы имплантируемой примеси относительная чувствительность уменьшается и становится меньше, чем у исходной пленки. При этом расхождение значений относительной чувствительности для образцов одной серии также уменьшается и при дозе 10^{13} см⁻² достигает 10%.

Рис. 1. Кинетика сенсорного отклика ионно-легированного платиной фталоцианина меди на диоксид азота при температуре 80°С: l - исходная пленка; 2 - при $\Phi = 10^{12}$ см⁻²; 3 - при $\Phi = 5 \cdot 10^{12}$ см⁻²; 4 - при $\Phi = 10^{13}$ см⁻²

С целью определения механизма влияния примеси на чувствительность сенсорных слоев органических материалов было выполнено моделирование адсорбционно-резистивного отклика с помощью теоретической модели прыжковой проводимости [3], расширенной на случай наличия двух типов примесей (ионноимплантированной и регистрируемого газа).

При этом проводимость будет определяться как собственными центрами локализации, так и

центрами локализации, обусловленными введенными примесями.

Удельные проводимости
$$\sigma_i$$
 каждой системы электронных энергетических уровней с номерами *i* и радиусами локализации электронов a_i можно представить как

$$\sigma_i = (\sigma_{03})_i \exp\left(-\frac{\alpha}{a_i n_i^{1/3}} - \frac{E_{ai}}{kT}\right), \qquad (1)$$

где $(\sigma_{03})_i$ – постоянные, зависящие от радиуса локализации; $\alpha = 1,73$ – перколяционная константа; n_i – концентрации центров локализации, соответствующие различным электронным энергетическим уровням; E_{ai} – энергии активации соответствующих этим уровням проводимостей.

Величины Еаі определяются соотношениями

$$E_{ai} = \frac{0.99e^2 n_i^{1/3}}{4\pi\epsilon_0 \epsilon}.$$
 (2)

Тогда удельная проводимость материала, содержащего примеси, будет равна

$$\sigma = \sum_{i=1}^{i=N} \sigma_i, \qquad (3)$$

а наблюдаемая экспериментально энергия активации проводимости определяется как

$$E_a = \frac{\sum_{i=1}^{i=N} E_{ai} \sigma_i}{\sum_{i=1}^{i=N} \sigma_i}.$$
 (4)

Концентрации центров локализации должны быть связаны между собой соотношением

$$n = n_1 + n_2 + n_3 = \text{const},$$
 (5)

где n — полная концентрация центров локализации, равная концентрации собственных центров локализации в материале без примесей; n_1 — концентрация центров локализации, соответствующая собственным состояниям; n_2 концентрация ионно-имплантированной примеси; n_3 — концентрация регистрируемого газа.

Выразив относительные концентрации ионно-имплантированной примеси *x* и регистрируемого газа *z* через полную концентрацию центров локализации как

$$z = \frac{n_3}{n}; \quad x = \frac{n_2}{n}$$
 (6)

и решая совместно систему уравнений (5)-(6), получим

$$n_1 = n(1 - x - z); \quad n_2 = nx; \quad n_3 = nz.$$
 (7)

Тогда удельная проводимость материала с примесями и наблюдаемая экспериментально

энергия активации проводимости будут определяться по формулам:

$$\sigma = \sigma_1 + \sigma_2 + \sigma_3;$$

$$E_a = \frac{E_{a1}\sigma_1 + E_{a2}\sigma_2 + E_{a3}\sigma_3}{\sigma_1 + \sigma_2 + \sigma_3}.$$
(8)

Предположим, что энергетические уровни ионно-имплантированной примеси и регистрируемого газа расположены в области собственных электронных состояний фталоцианина (рис. 2).

Рис. 2. Расположение энергетических уровней

Для расчетов использовались значения концентрации $n = 2,15 \cdot 10^{26} \text{ м}^{-3}$ и радиусов локализации электронов, соответствующих собственным, ионно-имплантированным (примесь 1) и регистрируемого газа (примесь 2) электронным состояниям, равные $a_1 = 0,425$ нм, $a_2 = 0,39$ нм, $a_3 = 0,42$ нм. Для построения зависимости проводимости от относительной концентрации *x* значение *z* принималось равным 0,1.

Результаты расчетов проводимости и относительной чувствительности, которая определялась как отношение проводимости в присутствии регистрируемого газа к проводимости без газа, представлены на рис. 3 и 4.

Как показывает рис. 4, увеличение относительной чувствительности в 12 раз происходит при относительной концентрации ионно-имплантированной примеси, составляющей 42%.

Интерпретация полученного результата может быть осуществлена на основе теоретической модели прыжковой проводимости с использованием рис. 3.

При расположении энергетических уровней регистрируемого газа и ионно-имплантированной примеси в области собственных электронных состояний фталоцианина, перенос электронов должен осуществляться по общей схеме собственных и примесных центров локализации, что и наблюдается на рис. 3. При значении относительной концентрации ионно-имплантированной примеси, составляющей 42%, происходит переход от примесной проводимости к собственной.

Рис. 3. Зависимость проводимости от относительной концентрации ионно-имплантированной примеси: *1* – с учетом только собственных состояний; *2* – с учетом только примесных состояний; *3* – без учета регистрируемого газа; *4* – с учетом регистрируемого газа

При дальнейшем увеличении концентрации ионно-имплантированной примеси наблюдается только уменьшение относительной чувствительности.

Рис. 4. Зависимость относительной чувствительности от относительной концентрации ионно-имплантированной примеси при *a*₁ = 0,425 нм; *a*₂ = 0,39 нм; *a*₃ = 0,42 нм

В случае когда энергетические уровни ионноимплантированной примеси не перекрываются с собственными электронными состояниями фталоцианина, перенос электронов должен осуществляться по одному из двух каналов – по собственным либо примесным локализованным состояниям, одно из которых вследствие экспоненциальной зависимости электропроводности от концентрации центров локализации является экспоненциально преобладающим. Тогда относительная чувствительность при увеличении концентрации ионно-имплантированной примеси должна монотонно убывать. Для расчетов использовались значения $a_1 = 0,425$ нм, $a_2 = 0,22$ нм, $a_3 = 0,42$ нм. Результаты расчетов представлены на рис. 5.

Заключение. Предложена теоретическая модель адсорбционно-резистивного отклика примесного органического полупроводника. Сопоставление расчетов по предложенной модели с экспериментальными данными позволило установить механизм сенсорного отклика на диоксид азота пленок ионно-легированного фталоцианина меди.

Рис. 5. Зависимость относительной чувствительности от относительной концентрации ионно-имплантированной примеси при *a*₁ = 0,425 нм; *a*₂ = 0,22 нм; *a*₃ = 0,42 нм

Показано, что ионно-имплантированная примесь увеличивает сенсорный отклик, если электронные состояния этой примеси располагаются по шкале энергий ниже собственных, а состояния регистрируемого газа – между собственными и состояниями ионно-имплантированной примеси. Установлено, что максимальный сенсорный отклик наблюдается при концентрации ионно-имплантированной примеси, соответствующей переходу от собственной к примесной проводимости примесного органического полупроводника.

Литература

1. Wright J. D. Gas adsorption and conductivity of phthalocyanines // Progress in surface science. 1989. Vol. 31. P. 1–60.

2. Pochtenny A. E., Fedoruk G. G., Ilyushonok I. P., Misevich A. V. The modified metallphthalocyanines: Electron transport mechanism and gas sensing properties // Electron Technology. 2000. Vol. 33, No. 1/2. P. 145–152.

3. Почтенный А. Е., Мисевич А. В. Влияние адсорбированного кислорода на проводимость пленок фталоцианина свинца // Письма в ЖТФ. 2003. Т. 29, № 1. С. 56–61.

Поступила 27.02.2014