А. А. Затюпо, ассист., канд. хим. наук; Л. А. Башкиров, проф., д-р хим.наук; Т. А. Шичкова, доц., канд.хим.наук, Г. Г. Эмелло, доц., канд. хим. наук (БГТУ, Минск)

СИНТЕЗ СЕГНЕТОМАГНЕТИКА ВіFeO₃ ИЗ ПРЕКУРСОРА Ві₂₅FeO₃₉ И ОКСИДА Fe₂O₃

Феррит висмута $BiFeO_3$ является одним из наиболее перспективных материалов, на основании которого разрабатывают новые магнитоэлектрические материалы, обладающие высокими значениями электрической поляризации и намагниченности при комнатной температуре. Синтез и свойства феррита висмута $BiFeO_3$ исследованы достаточно широко. При этом установлено, что получение однофазного $BiFeO_3$ представляет серьезную проблему: в синтезированном из оксидов $BiFeO_3$ присутствуют примесные фазы ферритов $Bi_{25}FeO_{39}$ и $Bi_2Fe_4O_9$.

В связи с этим целью работы явилась разработка твердофазного метода синтеза сегнетомагнетика $BiFeO_3$ из прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 . Для этого предварительно был осуществлен синтез прекурсора $Bi_{25}FeO_{39}$ из оксидов железа и висмута при температуре $750^{\circ}C$ (4 часа). Установлено, что полученный образец являлся однофазным и имел кубическую кристаллическую структуру силленита с параметрами кристаллической решетки a=10,1911(3) Å, V=1058,430(105) Å³, которые хорошо согласуются с литературными данными. Из полученного прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 был синтезирован образец $BiFeO_3$ при температуре $750^{\circ}C$ (4 часа). Поскольку полученный при указанных условиях образец $BiFeO_3$ не являлся однофазным, был проведен дополнительный обжиг при следующих режимах: $750^{\circ}C$ 2 ч, $750^{\circ}C$ 4 ч, $800^{\circ}C$ 2 ч.

Результаты изучения рентгеновских дифрактограмм образцов $BiFeO_3$, подвергшихся дополнительной термообработке, позволили установить, что наименьшее количество примесей ($\sim 3\%$) содержал образец, полученный после дополнительной термообработки при $800^{\circ}C$ (2 часа).

Предложенный метод получения $BiFeO_3$ из прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 позволил уменьшить температуру и время синтеза (по сравнению с твердофазным методом синтеза из соответствующих оксидов Bi_2O_3 и Fe_2O_3) и снизить содержание примесных фаз с \sim 5 до \sim 3 %).