И. И. Наркевич, проф., д-р физ.-мат. наук; Г. С. Бокун, доц., канд. физ.-мат. наук (БГТУ, г. Минск); Н. Т. Квасов, проф., д-р физ.-мат. наук (БГУ, г. Минск); К. Ю. Козич, студ.; Д. В. Прокопович, студ. (БГТУ, г. Минск) inarkevich@mail.ru

ПРИМЕНЕНИЕ ДВУХУРОВНЕВОГО МОЛЕКУЛЯРНО-СТАТИСТИЧЕСКОГО ПОДХОДА ДЛЯ РАСЧЕТА ЭНЕРГИИ И ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ МОЛЕКУЛ В КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦАХ НА ПРИМЕРЕ ИКОСАЭДРА

Для исследования структуры и термодинамических характеристик наночастиц будем использовать общие статистические формулы, полученные в рамках двухуровневого молекулярно-статистического

подхода [1], который является модификацией метода условных распределений Ротта [2] и используется при описании свойств неоднородных молекулярных систем с помощью потенциалов средних сил. Одночастичные потенциалы, являющиеся функционалами от искомых полей плотности, определяют вид младших условных функций распределения. Они удовлетворяют достаточно сложной системе интегральных уравнений, решение которой требует выполне-

Рисунок 1 – Икосаэдр

ния большого объема численных расчетов. Отсутствие аналитического выражения для этих потенциалов создает непреодолимые трудности

Рисунок 2 – Зависимость функции распределения \hat{F}_{11} от расстояния *x* при R = 1,12; R - радиус икосаэдра (рис. 1)

для последующего их использования при решении соответствующих вариационных задач [3] по определению, например, радиальных профилей плотности для сферических наночастиц. Дальнейшие возможные аналитические преобразования и последующие численные расчеты будем проводить для кристаллических наночастиц в виде икосаэдров (рис. 1) [4]. В этом случае функции распределения молекул вблизи узлов решетки имеют сильно выраженные максимумы, что позволяет получить приближенные аналитические зависимости для среднего одночастичного потенциала, который будем использовать в качестве удобной аппроксимации для потенциалов средних сил φ_{ij} (*i*, $j = 1, 2 \dots M$ – номера узлов решетки, M – общее число узлов). Для этого нормированные функции \hat{F}_{11} - приближения метода условных распределений, которые имеют резкие пики в окрестности узлов (рис. 2), заменим на функции \hat{F}_{11}^* с равномерным распределением молекул внутри сфер с радиусами b_i . Параметры b_i подбираем так, чтобы среднеквадратичные отклонения σ_i от узлов решетки были равны для функций \hat{F}_{11} и \hat{F}_{11}^* :

$$\sigma_i = \int_{\omega_1} r^2 \mathcal{F}_{11}(x, y, z) d\omega_i = \sqrt{\frac{3}{5}} b_i , \qquad (1)$$

где
$$\hat{F}_{11}(\vec{q}_i) = A_i \exp\left\{-\beta \sum_{j \neq i}^M \varphi_{ij}(\vec{\rho}_i)\right\}.$$
 (2)

Здесь $\beta = \theta^{-1}$ - обратная температура; $\vec{\rho}_i$ - радиус-вектор молекулы в ячейке ω_i по отношению к системе координат, начало которой совмещено с узлом ячейки ω_j , а суммирование проводится по всем узлам решетки. Для короткодействующих потенциалов можно ограничиться суммированием по узлам, принадлежащим нескольким ближайшим координационным сферам по отношению к центру ячей-ки ω_i .

Введенная функция \hat{F}_{11}^* позволяет аналитически выполнить усреднение потенциала Леннард – Джонса, который запишем в безразмерных переменных ($r^* = r / \sigma$ и $\Phi^*(r) = \Phi(r) / \varepsilon$, далее звездочки

Рисунок 3 – Схема расположения молекул *А* и *В* при выполнении усреднения по положениям молекулы *В* в сфере радиуса *b*

опускаем; σ и ε – параметры потенциала Леннард - Джонса):

$$\Phi(r) = 4(r^{-12} - r^{-6}).$$
 (3)

Средний потенциал $\phi(\rho)$ находим путем усреднения (3) с учетом корреляции в расположении двух молекул

внутри своих сфер радиусами b и β (рис. 3). Усреднение проводится только по заштрихованной области в ячейке с номером j, т. к. за счет корреляции в распределении этих молекул, они не могут находиться на расстояниях меньше, чем d (d - параметр обрезания, который в дальнейших численных расчетах принимался равным 0,9).

В результате средний потенциал $\phi(\rho, b, d)$ вычисляется по формуле

$$\varphi(\rho, b, d) = n_{ij} \frac{\int_{V_b} \Phi(r) E(r-d) dV_b}{\int_{V_b} E(r-d) dV_b} = n_{ij} \frac{I(r, b, d) \Big|_{r_1}^{r_2}}{V(r, b, d) \Big|_{r_1}^{r_2}}.$$
(4)

Здесь n_{ij} - двухячеечные числа заполнения ячеек с номерами i, j; E(r-d) - единичная ступенчатая функция Хевисайда:

$$E(r-d) = \begin{cases} 0 \operatorname{прu} r \le d, \\ 1 \operatorname{пpu} r > d. \end{cases}$$
(5)

После вычисления в сферической системе определенных интегралов по φ (от нуля до π) и углу θ (от нуля до θ_{\max} , рис. 2), а также неопределенного интеграла по *r*, получим следующие выражения для I(r,b,d) в числителе и V(r,b,d) в знаменателе формулы (4):

$$I(r,b,d) = 8\pi \left[\frac{1}{r^{10}} \left(\frac{(\rho^2 - b^2)}{20\rho} - \frac{r}{9} + \frac{r^2}{16\rho} \right) - \frac{1}{r^4} \left(\frac{(\rho^2 - b^2)}{8\rho} - \frac{r}{3} + \frac{r^2}{4\rho} \right) \right]; \quad (6)$$
$$V(r,b,d) = -2\pi \left[\frac{r^2(\rho^2 - b^2)}{4\rho} - \frac{r^3}{3} + \frac{r^4}{8\rho} \right]. \quad (7)$$

После подстановки пределов по координате *r*, которые зависят от соотношения между расстоянием ρ и параметрами *b* и *d*, получим аналитические выражения для потенциала $\phi^*(\rho, b, d) = \phi(\rho, b, d)/n_{ij}$:

$$\varphi^{*}(\rho, b, d,) = \begin{cases} \frac{I(\rho + b, b, d) - I(\rho - b, b, d)}{\frac{4}{3}\pi b^{3}} & \text{при } \rho \ge b + d; \\ \frac{I(\rho + b, b, d) - I(d, b, d)}{V(\rho + b, b, d) - V(d, b, d)} & \text{при } d - b < \rho < b + d; \\ \Phi(\rho + b) & \text{при } \rho \le d - b. \end{cases}$$
(8)

При изучении распределения 13 молекул икосаэдра полагаем $n_{ij} \square n_i n_j = 1$ и рассчитываем среднеквадратичное отклонение σ_0 для молекулы в его центральной ячейке ω_0 и аналогичное отклонение σ_1 для молекул, распределенных в двенадцати ячейках ω_i (*i* = 1, 2, ... 12), центры которых находятся на расстоянии *R* от центра икосаэдра. Для этого нужно решить систему двух уравнений:

$$A_{0} \int_{\omega_{0}} r^{2} \exp\left\{-\frac{1}{\theta} \sum_{i=1}^{12} \varphi_{0i}^{*}(\rho_{i}, b_{1}, d)\right\} d\omega_{0} = \sqrt{\frac{3}{5}} b_{0};$$

$$A_{1}r^{2} \int_{\omega_{1}} r^{2} \exp\left\{-\frac{1}{\theta} \left[\varphi_{10}^{*}(\rho_{0}, b_{0}, d) + \sum_{i=2}^{12} \varphi_{1i}^{*}(\rho_{i}, b_{1}, d)\right]\right\} d\omega_{1} = \sqrt{\frac{3}{5}} b_{1}.$$
(9)

Наличие аналитических выражений для среднего потенциала позволяет рассчитать с учетом корреляции среднюю энергию двух молекул, распределенных внутри сфер с радиусами β и *b* (рис. 2):

$$E(R,b,\beta) = \frac{\int_{R-\beta}^{R+\beta} \left(\rho^{2} - \frac{\rho^{3}}{2R} - \frac{\left(R^{2} - b^{2}\right)\rho}{2R}\right) \phi^{*}(\rho,b,d) d\rho}{\int_{R-\beta}^{R+\beta} \left(\rho^{2} - \frac{\rho^{3}}{2R} - \frac{\left(R^{2} - b^{2}\right)\rho}{2R}\right) V(\rho,b,d) d\rho}.$$
 (10)

С помощью (10) получено выражение для средней энергии икосаэдра с параметрами R, a, b_0 , b_1 (a – длина ребра икосаэдра), которая согласно (9) зависит от температуры θ :

$$E^{*}(R,b_{0},b_{1},\theta) = \frac{1}{2} \left[12E(R,b_{0},b_{1}) + \sum_{i=2}^{12} E(R_{i},b_{1},b_{1}) + E(R_{0},b_{1},b_{0}) \right]. (11)$$

Результаты численного решения системы (9) и последующего вычисления средней энергии икосаэдра приведены в таблице 1.

В качестве примера на рисунки 4, 5 изображены профили нормированной унарной функции $\hat{F}_{11}(x, y, z)$, определяющей распределение молекулы вблизи узла в центральной ячейке ω_0 (рисунок 4) и аналогичной функции для молекулы, распределенной вблизи вершины икосаэдра с координатами x_1 , y_1 , z_1 (рисунок 5), которая является одной из 12 симметрично расположенных его вершин.

Из рисунка 4 видно, что функция распределения \hat{F}_{11} в централь-

ной ячейке симметрична по отношению к осям x, y, z (рис. 1), причем ее профиль при x = y = z значительно уже, чем для $\hat{F}_{11}(x)$, $\hat{F}_{11}(y)$ и $\hat{F}_{11}(z)$.

0	0			0,3			0.5
θ	0		0,5				
R	σ_0	σ_1	E^*	σ_0	σ_1	E*	
1,00	0	0	-2,279	Решения не найдены			
1,05	0	0	-7,689				
1,1	0	0	-9,059	0,042 $b_0 = 0,054$	0,131 $b_1 = 0,169$	-6,143	
1,12	0	0	-9,057	0,047 $b_0 = 0,06$	0,120 $b_1 = 0,155$	-7,282	Решения не найдены
1,15	0	0	-8,744	0,056 $b_0 = 0,076$	0,124 $b_1 = 0,160$	-7,518	
1,20	0	0	-7,804	0,076 $b_0 = 0,098$	0,149 $b_1 = 0,193$	-6,952	
1,25	0	0	-6,711	0,096 $b_0 = 0,124$	0,184 $b_1 = 0,237$	-6,095	
1,30	0	0	-5,663	0,115 $b_0 = 0,148$	0,224 $b_1 = 0,289$	-5,238	
1,40	0	0	-3,942	Решение не найдено			

Таблица 1 - Среднеквадратичные отклонения σ₀, σ₁ и энергия *E* икосаэдра для разных значений его радиуса *R* и температуры θ

Рисунок 4 – Профили сечений для функции $\hat{F}_{11}(x, y, z)$ в центральной ячейке ω_0 при $\theta = 0,3$ и R = 1,15

Все аналогичные профили для функции $\hat{F}_{11}(x, y, z)$ в ячейке ω_1 , приведенные на рисунке 5, отличаются друг от друга, что указывает на сильно выраженную анизотропию в распределении молекул вблизи 12 периферийных узлов икосаэдра, причем колебания в различных направлениях имеют разные среднеквадратичные отклонения (амплитуды) и разную степень ангармонизма.

Отсутствие решений при температуре $\theta = 0,5$ можно интерпретировать как фазовый переход (при $\theta > 0,3$) кристаллической наночастицы в некоторое другое состояние. В работе [3] для кластера из 13 атомов определена температура плавления, которая оказалась равной 0,58.

В заключение отметим, что апробированная здесь методика статистического описания структуры наночастицы в форме икосаэдра будет использована в дальнейшем при описании углеродных наночастиц разных размеров и при разных температурах.

Рисунок 5 – Профили сечений для функции $\hat{F}_{11}(x, y, z)$ в ячейке ω_1 при $\theta = 0,3$ и R = 1,15

ЛИТЕРАТУРА

1 Наркевич, И. И. Молекулярно-статистическая теория неоднородных конденсированных сред: дис. ... д-ра физ-мат. наук / И. И. Наркевич. – СПб., 1993. – 223 л.

2 Ротт, Л. А. Статистическая теория молекулярных систем. Метод коррелятивных функций условных распределений / Л. А. Ротт. – М., 1979. -280 с.

3 Бокун, Г. С. Применение вариационных методов для описания структурных и термодинамических характеристик наночачстиц / Г. С. Бокун, В. С. Вихренко, И. И. Наркевич // Мат. МНК «Автоматический контроль и автоматизация производственных процессов». – Минск, 2015.

4 Берри, Р. С. Моделирование конфигурационных переходов в атомных системах / Р. С. Берри, В. М. Смирнов // УФН. - Том. 183, №10. - 2013. – С. 1029-1057.