Е.К. Юхно, асп.,

Л.А. Башкиров, проф., д-р хим. наук, <u>bashkirov@belstu.by</u> (БГТУ, г. Минск) П.П. Першукевич, канд. физ.-мат. наук (Институт физики НАН Беларуси, г. Минск) Н.А. Миронова-Улмане, проф., д-р физ.-мат. наук А.Г. Шараковский, канд. физ.-мат. наук (Институт физики твердого тела Латвийского университета, г. Рига)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, ФОТОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ЛЮМИНОФОРОВ НА ОСНОВЕ ИНДАТА ЛАНТАНА LaInO₃, ЛЕГИРОВАННОГО ИОНАМИ Sm³⁺, Tb³⁺, Sb³⁺

В последнее десятилетие значительно повысился интерес к исследованию спектров возбуждения и фотолюминесценции твердых растворов на основе LaInO₃, легированного ионами редкоземельных элементов, излучающих свет в видимой области и являющихся перспективными фотолюминофорами для изготовления светодиодов белого света.

Твердофазным методом из оксидов La_2O_3 , In_2O_3 , Sm_2O_3 , Tb_2O_3 , Sb_2O_3 получены твердые растворы $La_{0,98}Sm_{0,02}InO_3$, $La_{0,93}Tb_{0,07}InO_3$, $La_{0,92}Sm_{0,02}Tb_{0,06}InO_3$, $La_{0,91}Sm_{0,02}Tb_{0,07}InO_3$, $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,93}Tb_{0,07}In_{0,98}Sb_{0,02}O_3$, $La_{0,92}Sm_{0,02}Tb_{0,06}In_{0,98}Sb_{0,02}O_3$, $La_{0,91}Sm_{0,02}Tb_{0,07}In_{0,98}Sb_{0,02}O_3$.

Анализ рентгеновских дифрактограмм показал, что полученные керамические образцы твердых растворов на основе индата лантана LaInO₃, легированного ионами Sm^{3+} , Tb^{3+} , Sb^{3+} , имели кристаллическую структуру орторомбически искаженного перовскита типа

GdFeO₃ (a < <). Образцы твердых растворов на основе LaInO₃, легированного ионами Sm³⁺, Tb³⁺, были однофазными, а образцы твердых растворов на основе LaInO₃, легированного ионами Sm³⁺, Sb³⁺; Tb³⁺, Sb³⁺ и Sm³⁺, Tb³⁺, Sb³⁺, содержали примесную фазу LaSbO₃. Так как концентрация легирующих ионов Sm³⁺, Tb³⁺, Sb³⁺ в исследованных твердых растворах незначительная, то параметры кристаллической решетки для всех исследованных твердых растворов на основе индата лантана отличаются незначительно от параметров кристаллической решетки для LaInO₃.

Спектры возбуждения фотолюминесценции твердых растворов La_{0,98}Sm_{0,02}InO₃, La_{0,93}Tb_{0,07}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₃ при длинах волн регистрации (λ_{per}) полос возбуждения ионов Sm³⁺ (602 нм) и ионов Tb³⁺ (543 нм) приведены на рисунках 1*a*, *б*, *в*, *г* (кривые *I*) соответст-

венно, а спектры возбуждения твердых растворов $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,93}Tb_{0,07}In_{0,98}Sb_{0,02}O_3$, $La_{0,92}Sm_{0,02}Tb_{0,06}In_{0,98}Sb_{0,02}O_3$ при таких же величинах $\lambda_{per} = 602$ и 543 нм приведены также на этих рисунках 1*a*, *б*, *в*, *г* (кривые 2) соответственно.

Рисунок 1 – Спектры возбуждения люминесценции твердых растворов La_{0,98}Sm_{0,02}InO₃ (1), La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O₃ (2) при $\lambda_{per} = 602$ нм (*a*); La_{0,93}Tb_{0,07}InO₃ (1), La_{0,93}Tb_{0,07}In_{0,98}Sb_{0,02}O₃ (2) при $\lambda_{per} = 543$ нм (*b*); La_{0,92}Sm_{0,02}Tb_{0,06}InO₃ (1), La_{0,92}Sm_{0,02}Tb_{0,06}In_{0,98}Sb_{0,02}O₃ (2) при $\lambda_{per} = 602$ нм (*b*) н 543 нм (2)

Анализ спектров возбуждения люминесценции твердых растворов La_{0,98}Sm_{0,02}InO₃, La_{0,93}Tb_{0,07}InO₃ (рисунок 1, кривые *1*) показывает, что спектры возбуждения твердых растворов, содержащих два различных редкоземельных иона, следует получать при двух значениях λ_{per} (например, 602 нм, 543 нм), при которых наблюдаются полосы возбуждения фотолюминесценции ионов Sm³⁺ и Tb³⁺ соответственно. В связи с этим в настоящей работе спектры возбуждения твердых растворов La_{0,92}Sm_{0,02}Tb_{0,06}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₉₈Sb_{0,02}O₃ получены при $\lambda_{per} = 602$, 543 нм. Анализ спектров возбуждения, приведенных на рисунке 1, показывает, что замещение 2 % ионов In³⁺ в твердых растворах La_{0,98}Sm_{0,02}InO₃, La_{0,93}Tb_{0,07}InO₃ ионами Sb³⁺ приводит к повышению интенсивности полос возбуждения ионов Sm³⁺ (рисунок 1*a*) и

к уменьшению интенсивности полос возбуждения ионов Tb³⁺ (рисунок 1*б*). Установлено, что величины длин волн максимумов интенсивности полос возбуждения ионов Sm³⁺ ($\lambda_{per} = 602$ нм) в твердых растворах La_{0,98}Sm_{0,02}InO₃, La_{0,98}Sm_{0,02}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₃, Ca_{0,92}Sm_{0,02}Tb_{0,06}InO₃, La_{0,92}Sm_{0,02}Tb_{0,06}InO₃, La_{0,93}Sb_{0,02}O₃ отличаются незначительно. Такое же незначительное отличие значений длин волн максимумов интенсивности полос возбуждения наблюдается и для исследованных твердых растворов, содержащих ионы Tb³⁺. Установлено, что спектр возбуждения фотолюминесценции твердого раствора LaIn_{0,98}Sb_{0,02}O₃, полученный при $\lambda_{per} = 450$ нм, содержит лишь одну интенсивную полосу возбуждения с максимумом длины волны при 324 нм, которая перекрывается с полосой возбуждения ионов Sm³⁺, Tb³⁺ твердых растворов La_{0,98}Sm_{0,02}InO₃, La_{0,93}Tb_{0,07}InO₃.

Спектр фотолюминесценции при $\lambda_{B030} = 320$ нм твердого раствора LaIn_{0.98}Sb_{0.02}O₃ содержит также одну интенсивную полосу фотолюминесценции с максимумом при 420 нм, которая перекрывается с полосой возбуждения ионов Sm³⁺ твердого раствора La_{0,98}Sm_{0,02}InO₃ с максимумом при 408 нм. В связи с этим для ионов Sm³⁺, Sb³⁺ твердого раствора La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ выполняется основное условие существования эффекта сенсибилизации, когда полоса фотолюминесценции сенсибилизатора (Sb³⁺) перекрывается с полосой возбуждения (поглощения) активатора (Sm³⁺). По этой причине замещение в твердом растворе 2 % ионов In³⁺ ионами Sb³⁺ приводит к значительному увеличению всех полос фотолюминесценции при $\lambda_{B036} = 320$ нм (рисунок 2а). Анализ спектров возбуждения и спектров фотолюминесценции твердых растворов $LaIn_{0.98}Sb_{0.02}O_3$, $La_{0.93}Tb_{0.07}InO_3$ (рисунок 16), $La_{0.93}Tb_{0.07}In_{0.98}Sb_{0.02}O_3$ (рисунок 2б) показывает, что единственная полоса фотолюминесценции ионов Sb³⁺ имеет максимум длины волны 420 нм, а ближайшая к ней полоса возбуждения люминесценции твердого раствора La_{0.93}Tb_{0.07}InO₃ имеет максимум длины волны 380 нм, т. е. основное условие сенсибилизации не выполняется. По этой при- Sb^{3+} твердого чине поглощенная энергия ионами раствора $La_{0.93}Tb_{0.07}In_{0.98}Sb_{0.02}O_3$ не передается ионам Tb^{3+} и эффект сенсибилизации в данном случае отсутствует. Спектры фотолюминесценции твердых растворов La_{0.92}Sm_{0.02}Tb_{0.06}InO₃, La_{0.92}Sm_{0.02}Tb_{0.06}In_{0.98}Sb_{0.02}O₃ при $\lambda_{B030} = 275, 320, 365, 408$ нм, приведенные на рисунках 2*e*, *c*, *d*, *e*, показывают, что замещение в кристаллической решетке твердого раствора $La_{0.92}Sm_{0.02}Tb_{0.06}InO_3$ 2 % ионов In^{3+} ионами Sb^{3+} приводит на спектрах фотолюминесценции при $\lambda_{возб} = 320$ нм (рисунок 2*в*) к значительному увеличению интенсивности полос фотолюминесценции ионов Sm³⁺. Однако анализ спектров фотолюминесценции этих твердых растворов, полученных при $\lambda_{возб} = 275$, 365, 408 нм (рисунки 2*г*, *д*, *e*), показывает, что введение в кристаллическую решетку твердого раствора $La_{0,92}Sm_{0,02}Tb_{0,06}InO_3$ 2 % ионов Sb³⁺ приводит к небольшому уменьшению интенсивности полос фотолюминесценции ионов Sm³⁺ на этих спектрах.

Рисунок 2 – Спектры фотолюминесценции при $\lambda_{B036} = 320$ нм твердых растворов La_{0,98}Sm_{0,02}InO₃ (*a*, 1), La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O₃ (*a*, 2), La_{0,93}Tb_{0,07}InO₃ (*б*, 1), La_{0,93}Tb_{0,07}In_{0,98}Sb_{0,02}O₃ (*б*, 2); при $\lambda_{B036} = 320$ нм (*в*), 275 нм (*г*), 365 нм (*д*), 408 нм (*е*) твердых растворов La_{0,92}Sm_{0,02}Tb_{0,06}InO₃ (1) и La_{0,92}Sm_{0,02}Tb_{0,06}In_{0,98}Sb_{0,02}O₃ (*2*)

Следовательно, полученные результаты показывают, что ионы Sb³⁺ являются хорошими сенсибилизаторами фотолюминесценции ионов Sm³⁺ при $\lambda_{B036} = 320$ нм, т. к. в этом случае выполняется основное условие сенсибилизации, когда полоса фотолюминесценции сенсибилизатора (Sb³⁺) перекрывается с полосой возбуждения (поглощения) активатора (Sm³⁺), а при других значениях λ_{B036} это условие сенсибилизации не выполняется.