ТЕХНОЛОГИЯ ПОЛИГРАФИЧЕСКИХ ПРОИЗВОДСТВ

УДК 655.3.06

И. Г. Громыко

Белорусский государственный технологический университет

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПОТЕРЬ ИНФОРМАЦИОННОЙ ЕМКОСТИ ОТТИСКОВ ЛИСТОВОЙ И РУЛОННОЙ ОФСЕТНОЙ ПЕЧАТИ

Статья посвящена оценке качества воспроизведения оттисков офсетной печати, полученных на листовых и рулонных печатных машинах на основе информационного подхода. Расчет теоретического и реальных значений информационной емкости в конкретных условиях печатания позволили определить величину и характер изменения потерь информации на протяжении печатания тиража. При этом прослеживается четкая закономерность колебания потерь информационной емкости в более широком диапазоне для рулонных машин по сравнению с листовыми. Однако, в конечном итоге, более быстрая стабилизация процесса печатания для рулонных машин будет приводить к снижению величины потерь информации. Это демонстрируют полученные зависимости потерь информационной емкости оттисков на протяжении печатания тиража. Представленный характер зависимостей связан в первую очередь с неодинаковым развитием релаксационных процессов для рулонных и листовых машин, обусловленных влиянием скорости печати. Именно поэтому в начале печатания тиража на рулонных машинах влияние скорости печати на переход краски будет значительным, а потери информации максимальными. Проведенная сравнительная характеристика позволит в равных условиях с учетом входных параметров процесса выбрать печатное оборудование и получить оттиски высокого качества.

Ключевые слова: качество печатной продукции, оптическая плотность, информационная емкость, разрешение, эффективная линиатура, листовая печать, рулонная печать.

I. G. Gromyko

Belarusian State Technological University

COMPARATIVE CHARACTERISTICS OF THE LOSS OF INFORMATION CAPACITY IMPRESSIONS SHEET AND WEB OFFSET PRINTING

The article is devoted to assessing the quality of offset printing reproduction prints obtained on the sheet and roll printing machines on the basis of the information approach. The calculation of the theoretical and actual data capacity values in the specific conditions of printing made it possible to determine the magnitude and nature of changes in the loss of information during the print run. Thus one can trace a clear regularity of information capacity loss fluctuations over a wider range for rolling machines as compared with the sheet ones. However, ultimately, faster stabilization of the printing process for roll machines will lead to the decrease of information loss. It is demonstrated by the obtained dependencies of the information capacity loss throughout the printing run. Submitted pattern of the dependencies is associated primarily with the uneven development of relaxation processes for roll and sheet machines, due to the influence of printing speed. That is why at the beginning of the printing process on the roll machines the impact of the printing speed on the transition of the ink will be significant, and the data loss will be maximum. Being carried out comparative characteristics will enable on equal conditions to select printing equipment and get high-quality prints taking into account the input parameters of the process.

Key words: quality of printed products, optical density, the information capacity, resolution, effective linearity, sheet printing, roll printing.

Введение. Существующие в настоящее время листовые и рулонные печатные машины позволяют получать высококачественные от-

тиски. Однако, если листовая печать отличается высоким качеством получаемого изображения, экономичностью и продуктивностью, то

рулонная печать характеризуется значительной производительностью, более узкой специализацией и применяется в основном при выпуске крупных тиражей.

Оценка качества печатной продукции традиционно осуществляется на основе единичных показателей, которые могут быть измерены и выражены размерными или безразмерными величинами. При этом проведение печатного процесса в реальных условиях характеризуется колебаниями и отклонениями данных показателей от нормируемых значений. Именно с этой точки зрения поддержание стабильности печатного процесса является важным для получения качественной продукции. В этом случае доминирующая роль отводится режимным параметрам печатного процесса, которые устанавливаются в начале печатания тиража. К ним относятся определенные требования к подаче краски и увлажняющего раствора, требования к давлению в зоне контакта элементов печатной пары, составу декельного материала, скорости проведения печатного процесса, к климату в цехе и ряд других условий [1].

Управление процессом печатания на офсетной машине должно обеспечивать поддержание режимов работы для получения необходимого количества оттисков требуемого качества с наименьшими затратами труда, времени и материалов. При этом процесс печатания на листовых машинах характеризуется большей стабильностью в отношении режимных параметров. Это связано с ограничениями в скорости работы данного оборудования.

Регулировки режимных параметров в процессе печатания тиража неизбежны, однако они не должны приводить к нарушению полноты передачи информации на оттиске. С этой точки зрения является целесообразным использовать информационный подход для анализа потерь информации на оттисках листовой и рулонной печати.

Основная часть. Определение потерь информационной емкости базировалось на значениях оптической плотности оттисков, полученных на листовой офсетной машине Рапида 106-5 и рулонной машине Циркон Форта 660. Оттиски были получены на офсетной бумаге № 1 плотностью 80 г/м^2 .

Для определения потерь информации в процессе печатания тиража на листовой и рулонной машинах были рассчитаны значения информационной емкости полученных оттисков по формуле [2]

$$I = L^2 \log_2 \left[\left(\frac{R}{L} \right)^2 + 1 \right],\tag{1}$$

где L — линиатура; R — разрешение.

С целью выявления параметров, оказывающих влияние на результат печатного процесса, были использованы значения оптических плотностей оттисков. При этом нормативные значения оптических плотностей в соответствии с ОСТ 29.66–90 составили: для черной краски — 1,35; голубой — 1,25; пурпурной — 1,20; желтой — 1,05. Линиатура воспроизведения — 175 лин./см, разрешающая способность — 2540 dpi.

Проведение реального процесса печатания сопровождается колебаниями режимных параметров, что оказывает дестабилизирующее влияние на основные показатели качества печатной продукции. Это приводит, в первую очередь, к изменениям значений оптической плотности оттисков, а также к проявлению ряда дефектов, в частности растискивания. С целью выявления данных нарушений были определены значения относительных площадей растровых элементов на оттиске, изменение значений которых вызывает нарушение графической и градационной передачи, что привело к необходимости расчета уточненного значения линиатуры. Это позволит учесть вклад влияния режимных параметров процесса при оценке качества печатной продукции.

Расчет значений эффективной линиатуры был выполнен по формуле [3, 4]

$$L_{\rm sph} = \frac{L}{1 + 1.13 \left(\sqrt{S_{\rm oth}^{\rm oth}} - \sqrt{S_{\rm oth}^{\rm oth}} \right)} \,. \tag{2}$$

В соответствии с этим эффективное значение информационной емкости составило [3]

$$I_{9\phi} = L_{9\phi}^2 \log_2 \left[\left(\frac{R}{L_{9\phi}} \right)^2 + 1 \right]. \tag{3}$$

Таким образом, предел информационной емкости оттисков в заданных условиях печати составил 1 002 259 бит/дюйм². Это предельное значение данной величины, определяемое входными параметрами процесса.

Величина потерь информационной емкости оттисков была рассчитана по формуле

$$\Delta I_{\rm ab} = I - I_{\rm ab} \,. \tag{4}$$

Расчетные значения потерь информационной емкости оттисков при печати на листовой и рулонной печатной машинах для черной краски приведены в табл. 1.

Характер зависимости потерь информационной емкости оттисков в процессе печатания тиража для черной краски представлен на рис. 1.

И. Г. Громыко

Таблица 1
Расчетные значения потерь информационной
емкости оттисков для черной краски

$L_{ m o}$	$I_{ m o}$	$\Delta I_{ m o}$	ΔI , %
	Листова		
157,9	862 537	139 722	13,9
157,4	858 345	143 913	14,4
157,5	859 563	142 695	14,2
158,2	865 058	137 200	13,7
158,8	869 603	132 656	13,2
159,2	873 058	129 201	12,9
159,2	873 149	129 110	12,9
159,5	875 550	126 709	12,6
158,9	870 090	132 169	13,2
159,0	871 629	130 630	13,0
	Рулонна	я печать	
157,1	855 551	146 708	14,6
157,7	860 708	141 550	14,1
158,7	868 551	133 708	13,3
157,9	862 716	139 542	13,9
159,2	872 724	129 535	12,9
159,7	876 736	125 523	12,5
158,8	870 006	132 253	13,2
159,2	873 269	128 990	12,9
159,5	875 701	126 558	12,6
160,9	886 326	115 932	11,6

Анализируя полученные данные, можно отметить уменьшение значения эффективной линиатуры. Также наблюдается снижение величины информационной емкости оттисков. При этом характер изменения потерь информационной емкости в процессе печатания тиража будет неравномерным: характеризуется более высокими потерями информации в начале печатания тиража с последующим их снижением. Причем данная закономерность прослеживается как для листовой, так и для рулонной печати. Однако величина потерь для оттисков, полученных на листовых машинах, несколько превышает потери для рулонных машин, что связано с более быстрой стабилизацией условий проведения процесса рулонной печати. Это приводит к сокращению времени вывода машины на стабильный режим работы.

Также необходимо отметить, что для рулонной печати характерен больший разброс потерь информационной емкости оттисков в процессе печатания тиража. Это, с одной стороны, демонстрирует нестабильность проведения печатного процесса, а с другой — позволяет получать минимальные потери при стабилизации условий проведения печати. При этом листовая печать характеризуется небольшим разбросом потерь информационной емкости, что обуславливает минимальные отклонения показателей качества от нормируемых величин.

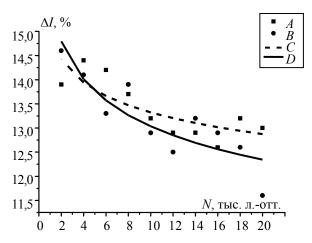


Рис. 1. Зависимость потерь информационной емкости оттисков в процессе печатания тиража для черной краски: A — экспериментальные данные для листовой печати; B — экспериментальные данные для рулонной печати; C — аппроксимирующая функция для листовой печати; D — аппроксимирующая функция для рулонной печати

Расчетные значения потерь информационной емкости оттисков при печати на листовой и рулонной печатной машинах для голубой краски приведены в табл. 2.

Таблица 2 Расчетные значения потерь информационной емкости оттисков для голубой краски

L_{igh}	$I_{2\Phi}$	$\Delta I_{ m o}$	ΔI , %
Листовая печать			
157,7	860 924	141 335	14,1
157,4	858 673	143 586	14,3
158,6	867 652	134 607	13,4
159,0	871 017	131 241	13,1
158,7	868 965	133 294	13,3
159,6	875 723	126 536	12,6
159,8	877 683	124 576	12,4
159,2	873 265	128 994	12,9
159,1	872 549	129 710	12,9
159,5	875 642	126 617	12,6
	Рулонна	я печать	
156,2	848 869	143 971	15,3
155,5	842 800	154 857	15,9
157,3	857 298	144 961	14,5
158,7	868 545	133 713	13,3
158,5	867 222	135 037	13,5
159,3	873 265	128 994	12,9
158,5	867 454	134 805	13,5
158,9	870 421	131 838	13,2
159,7	876 865	128 467	12,5
160,1	880 490	126 531	12,1

Характер изменения зависимости потерь информационной емкости оттисков в процессе печатания тиража для голубой краски представлен на рис. 2.

Как показывают полученные данные, характер зависимости потерь информационной емкости для голубой краски сохраняется. Это в частности объясняется релаксационными процессами, происходящими в декеле. Проведение эксперимента проходило в условиях использования жесткого декеля как для листовой, так и для рулонной машины.

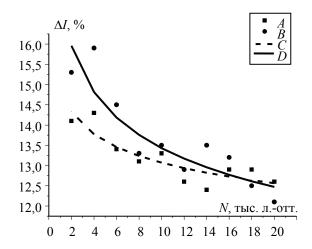


Рис. 2. Зависимость потерь информационной емкости оттисков в процессе печатания тиража для голубой краски:

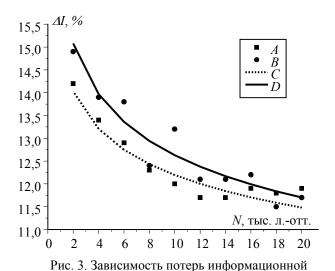
A — экспериментальные данные для листовой печати; B — экспериментальные данные для рулонной печати; C — аппроксимирующая функция для листовой печати; D — аппроксимирующая функция для рулонной печати

Вследствие релаксации напряжений в декеле давление в зоне контакта печатной пары снижается. Это препятствует равномерному переходу краски на оттиск и такому же распределению оптической плотности. При этом развитие релаксационных процессов в декеле для листовых и рулонных машин протекает неодинаково. В данном случае это обусловлено влиянием скорости печати на величину давления.

С увеличением скорости работы печатной машины происходит уменьшение ширины полосы контакта и рост давления печати. Одновременно наблюдается сокращение времени печатного контакта, сопровождаемое незначительным снижением перехода краски, который компенсируется ростом давления печати. Это приводит к тому, что в начале печатания тиража на рулонной машине влияние скорости на переход краски вносит существенный вклад при расчете потерь информационной емкости, которые будут

максимальными. Дальнейшее снижение потерь можно объяснить релаксационными явлениями, проявляющимися в росте давления печати, стабилизации переноса печатной краски и снижении потерь информационной емкости оттисков.

Расчетные значения потерь информационной емкости оттисков при печати на листовой и рулонной печатной машинах для пурпурной краски приведены в табл. 3.


Таблица 3 Расчетные значения потерь информационной емкости оттисков для пурпурной краски

$L_{2\phi}$	$I_{ m o}$	ΔI_{ii}	ΔI , %
Листовая печать			
157,6	859 627	152 344	14,2
158,5	867 547	142 916	13,4
159,2	872 832	129 427	12,9
160,6	884 327	117 932	11,8
159,8	877 730	124 529	12,4
161,4	890 792	111 466	11,1
160,8	885 423	116 836	11,7
159,9	878 435	123 824	12,4
160,5	883 756	118 502	11,8
160,4	882 791	127 866	11,9
	Рулонна	я печать	
156,8	853 215	149 044	14,9
158,0	863 072	139 187	13,9
158,1	863 663	138 596	13,8
159,9	878 353	123 906	12,4
158,9	870 181	132 077	13,2
160,2	880 647	121 612	12,1
160,3	881 381	120 878	12,1
160,1	879 841	122 417	12,2
161,0	886 825	115 434	11,5
160,8	885 423	116 836	11,7

Характер зависимости потерь информационной емкости оттисков в процессе печатания тиража для пурпурной краски представлен на рис. 3.

Анализируя полученные значения для пурпурной краски, можно отметить, что величины потерь информационной емкости оттисков находятся в допустимых пределах в соответствии с изменениями оптической плотности. Печать на листовой и рулонной машинах характеризуется наибольшими потерями в начале печатания тиража с последующим снижением. При этом изменения величин информационной емкости происходят не только под действием релаксационных процессов в декеле. Также необходимо учитывать влияние и температурного фактора на величину оптической плотности и качество печатной продукции. Увеличение температуры красочного аппарата при работе печатной машины приводит к изменению реологических свойств печатных красок.

И. Г. Громыко

емкости оттисков в процессе печатания тиража для пурпурной краски: A — экспериментальные данные для листовой печати; B — экспериментальные данные для рулонной печати; C — аппроксимирующая функция для листовой печати;

D — аппроксимирующая функция для рулонной печати

Особенно явно данное влияние обнаруживается при работе рулонной печатной машины. При этом начало печатания тиража характеризуется наибольшим приростом температуры, что оказывает дестабилизирующее влияние на реологические свойства красок и их перенос на запечатываемый материал.

Расчетные значения потерь информационной емкости оттисков при печати на листовой и рулонной печатной машинах для желтой краски приведены в табл. 4.

Таблица 4 Расчетные значения потерь информационной емкости оттисков для желтой краски

$L_{9\Phi}$	$I_{ m o}$	$\Delta I_{ m o}$	ΔI , %	
	Листовая печать			
158,8	870 000	132 259	13,2	
158,5	867 278	134 981	13,5	
159,3	873 840	128 419	12,8	
158,9	870 406	131 852	13,2	
159,3	873 797	128 462	12,8	
160,4	882 238	120 021	12,0	
160,4	882 243	120 016	12,0	
160,6	884 489	117 770	11,8	
159,9	878 353	123 906	12,4	
159,4	874 616	127 643	12,7	
Рулонная печать				
157,3	857 755	144 504	14,4	
158,1	864 343	137 915	13,8	
159,6	876 003	126 256	12,6	

Окончание табл. 4

$L_{9\phi}$	$I_{2\phi}$	$\Delta I_{ m o}$	ΔI , %
158,3	865 493	136 766	13,6
159,7	877 232	125 027	12,5
159,8	877 700	124 559	12,4
159,4	874 765	127 494	12,7
159,5	875 243	127 015	12,7
160,5	883 089	119 170	11,9
160,7	884 723	117 535	11,7

Характер зависимости потерь информационной емкости оттисков в процессе печатания тиража для желтой краски представлен на рис. 4.

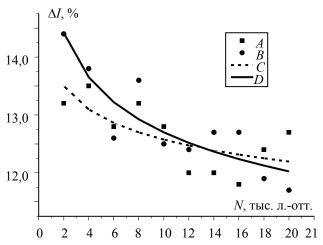


Рис. 4. Зависимость потерь информационной емкости оттисков в процессе печатания тиража для желтой краски:

A — экспериментальные данные для листовой печати; B — экспериментальные данные для рулонной печати; C — аппроксимирующая функция для листовой печати; D — аппроксимирующая функция для рулонной печати

Полученные расчетные значения для желтой краски свидетельствуют об увеличении эффективной линиатуры и информационной емкости оттисков. Также наблюдается снижение потерь информации в процессе печатания тиража. Поддержание стабильного значения информационной емкости оттисков и снижение величины их потерь можно компенсировать регулировкой режимных параметров печатного процесса. В частности регулировка подачи краски поможет скомпенсировать возникающие потери при поддержании неизменных значений оптической плотности оттисков в соответствии с денситометрическими нормами печатания.

Построенные зависимости потерь информационной емкости оттисков в процессе печатания тиража аппроксимируются функциями, представленными в табл. 5.

Желтая

Аппроксимирующие функции			
Краска	Аппроксимирующая функция	Показатель R^2	
Листовая печать			
Черная	$y = 20,998x^{-0,049}$	0,640	
Голубая	$y = 22,096x^{-0,057}$	0,776	
Пурпурная	$y = 27,176x^{-0.087}$	0,916	
Желтая	$y = 18,913x^{-0,044}$	0,502	
Рулонная печать			
Черная	$y = 26,908x^{-0,079}$	0,751	
Голубая	$y = 35,984x^{-0,107}$	0,815	
Пурпурная	$y = 34,784x^{-0.11}$	0,898	
	0.070		

Таблица 5 **Аппроксимирующие функции**

Повышение стабилизации проведения печатного процесса возможно за счет использования максимальной производительности печатного оборудования. Однако это становится не всегда возможным по причине реализации небольших тиражей в печатном процессе. В этом смысле время печатания тиража оказы-

вается меньше времени выхода печатной машины на стабильный режим работы. Поэтому выбор печатного оборудования в конкретных условиях безусловно должен осуществляться на основе целого комплекса факторов.

Таким образом, максимальная реализация возможностей печатного процесса возможна на основе баланса режимов работы печатного оборудования. Это позволит обеспечить получение оттисков высокого качества с минимальными потерями.

Заключение. Полученные в результате проведения эксперимента данные позволили выполнить сравнительный анализ качества оттисков при печати на листовом и рулонном оборудовании на основе информационного подхода. Расчет величин потерь информации в процессе печатания тиража выявил причины снижения качества печатной продукции. Показатель информационной емкости в данном случае позволил в полной мере дать оценку результата печатного процесса при изменении режимов работы оборудования, что необходимо учитывать при получении продукции высокого качества.

Литература

0.778

- 1. Раскин А. Н., Ромейков И. В., Бирюкова Н. Д. Технология печатных процессов. М.: Книга, 1989. 432 с.
- 2. Громыко И. Г., Мацуева С. Д. Информационная оценка воспроизведения цифровых и полиграфических оригиналов способом офсетной печати // Труды БГТУ. 2014. № 9: Издат. дело и полиграфия. С. 18–22.
- 3. Громыко И. Г. Влияние скорости печатного процесса н величину потерь информационной емкости оттисков офсетной печати // Труды БГТУ. 2015. № 9: Издат. дело и полиграфия. С. 7–11.
- 4. Гуляев С. А., Ромейков И. В., Тихонов В. П. Основы технологии печатных процессов. Технология печатных процессов. М.: Мир книги, 1997. 168 с.

References

- 1. Raskin A. N., Romeykov I. V, Biryukova N. D. Tekhnologiya pechatnykh protsessov [Printing technologies]. Moscow, Kniga Publ., 1989. 432 p.
- 2. Gromyko I. G., Matsueva S. D. Information evaluation playback of digital and print original by offset printing. *Trudy BGTU* [Proceedings of BSTU], 2014, no. 9: Publishing and Printing, pp. 18–22 (In Russian).
- 3. Gromyko I. G. Influence of speed printing process on value of losses information capacity of offset printing prints. *Trudy BGTU* [Proceedings of BSTU], 2015, no. 9: Publishing and Printing, pp. 7–11 (In Russian).
- 4. Gulyaev S. A., Romeykov I. V., Tikhonov V. P. *Osnovy tekhnologii pechatnykh protsessov. Tekhnologiya pechatnykh protsessov* [Basics of printing processes technology. The technology of printing processes]. Moscow, Mir knigi Publ., 1997. 168 p.

Информация об авторе

Громыко Ирина Григорьевна — кандидат технических наук, доцент кафедры полиграфических производств. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: gromyko@belstu.by

Information about the author

Gromyko Irina Grigor'yevna — PhD (Engineering), Assistant Professor, the Department of Printing Production. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: gromyko@belstu.by

Поступила 02.05.2016