Диспергированные частицы никеля, полученные на титановом катоде из исследованных электролитов, имеют форму вытянутых дендритов с близко расположенными ветвями (рис. 1, а и б). Размер частиц изменяется от 5 до 10 мкм, однако имеется фракция и более мелких частиц.

Частицы, полученные на алюминиевом катоде, имели более округлую и менее вытянутую форму, по сравнению с частицами, полученными на титановом электроде. При этом количество крупных частиц размером 20 мкм увеличилось.

Таким образом, частицы никеля размером 5-15 мкм могут быть получены диспергированием на титановом и алюминиевом катоде из исследованных электролитов. Для повышения эффективности процесса (увеличение доли диспергированных частиц в общей массе рыхлого осадка) необходимо использовать высокие токи (Ки>100).

Проведенные исследования (частично) выполнены с использованием оборудования центра коллективного пользования «Состав вещества» ИВТЭ УрО РАН.

ЛИТЕРАТУРА

1 Т.Н. Останина, А.В. Патрушев, В.М. Рудой, А.В. Верещагина, В.С. Никитин, А.С. Фарленков Влияние состава электролита на электрокристаллизацию дендритных осадков цинка. Известия СПбГТИ (ТУ), 2015, № 27, С. 22-27.

УДК 628.16.087

А.В. Перфильева, вед. инж.; канд. техн. наук; В.И. Ильин, вед. научн. сотр., канд. техн. наук; В.А. Бродский, ст. науч. сотр., канд. хим. наук; Р.В. Якушин, ст. преп., канд. техн. наук (РХТУ им. Д.И. Менделеева, г. Москва)

ЭЛЕКТРОФЛОТАЦИОННОЕ ИЗВЛЕЧЕНИЕ МАЛОРАСТВОРИМЫХ СОЕДИНЕНИЙ ХРОМА (III) В СОСТАВЕ МНОГОКОМПОНЕНТНЫХ СИСТЕМ

В практике очистки сточных вод гальванохимических производств крайне редко встречаются системы, содержащие ионы одного металла. Сточные воды зачастую обрабатываются в общем потоке и поэтому содержат как минимум ионы двух-трёх металлов, которые образуют малорастворимые соединения при различных значениях рН, в частности гидроксиды и гидратированные оксиды. При этом, значе-

ния минимальной растворимости индивидуальных соединений могут отличаться друг от друга на 2-3 единицы.

Таким образом, при разработке технологии электрофлотационного извлечения малорастворимых соединений металлов из много-компонентных систем выбор оптимальных условий является не простой, но важной задачей.

Предварительный эксперимент показал, что скорость процесса и остаточная концентрация при флотации смеси двух- и трехкомпонентных систем зависит, в первую очередь, от рН среды, соотношения компонентов, природы извлекаемых ионов и присутствия флокулянтов [1].

В связи с этим изучен процесс совместного удаления малорастворимых соединений хрома (III), железа (II), (III), никеля, меди в присутствии флокулянтов в составе двух и трехкомпонентных систем: Cr-Ni, Cr-Ni-Fe(II), Cr-Ni-Cu, иллюстрирующие различные случаи, имеющие место на практике при очистке сточных вод гальванического производства.

В таблице 1 представлены результаты исследований электрофлотационного извлечения хрома из многокомпонентных систем в отсутствии флокулянтов.

Таблица 1 - Основные результаты, полученные при исследовании процесса электрофлотационного извлечения малорастворимых соединений хрома (III)

stick population of a spire terms mattapart behinds coeguitem in Apona (111)						
		Показатели				
	Дисперсная система	процесса				
		α , %	$\tau_{9\phi}$, мин			
1	$[Cr(OH)_3]:[Cu^{2+}, Ni^{2+}, Zn^{2+}]=[1]:[2-10]$	65 - 80	12 – 15			
2	$[Cr(OH)_3]:[Fe^{2+}, Fe^{3+}, Al^{3+}]=[1]:[1-10]$	85 - 95	12 – 15			
* В пересчёте на ион хрома (III)						

Анализ данных таблица 1 показывает, что существуют дисперсные системы, требующие проведения дополнительных исследований, направленных на интенсификацию (сокращение продолжительности электрофлотационного процесса) и повышение степени извлечения малорастворимых соединений хрома, такие как Cr-Cu, Ni, Zn.

Исследовано влияние pH на процесс электрофлотационного извлечения малорастворимых соединений хрома в присутствии малорастворимых соединений никеля и флокулянта M-10. Результаты приведены в табл. 2. Условия проведения экспериментальных исследований: $[Cr^{3+}] = 20 \text{ мг/л}$; $[Ni^{2+}] = 20 \text{ мг/л}$; $i_{06} = 0,4 \text{ A/л}$, $\tau_{9\varphi} = 10 \text{ мин}$; $[\sum Me^{3+}]$:[M-10] = 1:[0,03].

Установлено, что для совместного электрофлотационного извлечения малорастворимых соединений хрома (III) и никеля (II) в

присутствии анионного флокулянта из дисперсной системы оптимальным является рН 9.

Таблица 2 - Показатели процесса электрофлотационного извлечения малорастворимых соединений хрома и никеля в присутствии анионного флокулянта из дисперсной системы Cr(III)—Ni(II) в зависимости от рН среды

	Cr(III	(1)	Ni(II)		
pН	Остаточная	Степень	Остаточная	Степень	
	концентрация, мг/л	извлечения, %	онцентрация, мг/л	извлечения, %	
6,0	19,5	2,5	12,5	37,4	
7,0	4,7	76,5	4,4	78,1	
8,0	19,5	2,5	11,6	41,9	
9,0	0,01	99,9	0,01	99,9	
10,0	19,5	2,5	11,1	44,6	

В таблице 3 приведены показатели процесса в зависимости от времени обработки.

Таблица 3 - Показатели процесса электрофлотационного извлечения малорастворимых соединений хрома и никеля в присутствии анионного флокулянта из дисперсной системы Cr(III)—Ni(II) в зависимости от времени обработки

	Cr(III)	Ni(II)			
Время,	остаточная кон-	степень	остаточная	степень		
мин	центрация, мг/л	извлечения,	концентрация,	извлечения,		
		%	мг/л	%		
2	1,6	92,0	1,28	93,6		
5	0,01	99,9	0,53	97,4		
8	0,01	99,9	0,4	98,0		
10	0,01	99,9	0,01	99,9		

Анализ данных табл. 3 показывает, что уже за 5 минут электрофлотации достигается высокая степень извлечения малорастворимых соединений хрома (III), составляющая 99,9 %, при этом степень извлечения частиц малорастворимых соединений никеля (II) составляет 97,4 %.

Проведены исследования по электрофлотационному извлечению малорастворимых соединений хрома в присутствии малорастворимых соединений никеля и железа и флокулянта при рН 9. Результаты экспериментов представлены в таблице 4.

Условия проведения экспериментов: $[\mathrm{Cr}^{3^+}] = 20 \text{ мг/л}; [\mathrm{Ni}^{2^+}] = 20 \text{ мг/л}; [\mathrm{Fe}^{2^+}] = 20 \text{ мг/л}; i_{o6} = 0,4 \text{ A/л}; [\Sigma \mathrm{Me}^{\mathrm{n}^+}] : [\mathrm{M-}10] = 1 : [0,03].$

Как видно из данных таблицы 4 применение флокулянта позволяет достигать высоких степеней извлечения (α =99,2-99,9 %) за 3 минуты электрофлотации.

Таблица 4 - Влияние анионного флокулянта на показатели электрофлотационного извлечения малорастворимых соединений хрома

из дисперсной системы Cr(III)-Ni(II)-Fe(II)

Флокулянт	Cr(III)		Ni(II)		Fe(II)	
	остаточ-	степень	остаточ-	степень	остаточная	степень
	ная кон-	извле-	ная кон-	извлече-	концен-	извлечения,
	центра-	чения,	центра-	ния,	трация,	%
	ция, мг/л	%	ция, мг/л	%	мг/л	
отсутствует $\tau_{9\varphi} = 10$ мин	19,0	5,0	19,1	4,5	14,1	6,0
присутствует $\tau_{9\varphi} = 3$ мин	0,01	99,9	0,16	99,2	0,01	99,9

Проведены исследования по электрофлотационному извлечению малорастворимых соединений хрома в присутствии малорастворимых соединений никеля и меди и флокулянта при рН 9 в зависимости от времени обработки. Результаты экспериментов представлены в табл. 5.

Таблица 5 - Показатели процесса электрофлотационного извлечения малорастворимых соединений хрома в присутствии флокулянта из дисперсной системы Cr(III)—Ni(II)— Cu(II) в зависимости от времени обработки

eneremble et (111) fulli) eu (11) b subhenmoeth of bremenn obraootka							
	Cr(III)		Cu(II)		Ni(II)		
Время,	остаточная	степень	остаточная	степень из-	остаточ-	степень	
	концентра-	извле-	концентра-	влечения,	ная кон-	извлече-	
МИН	ция, мг/л	чения,	ция, мг/л	%	центра-	ния, $\%$	
		%			ция, мг/л		
2	1,2	94,0	0,66	96,7	0,8	96,0	
5	0,6	97,0	0,2	99,0	0,27	98,7	
8	0,01	99,9	0,2	99,0	0,22	99,0	
10	0,01	99,9	0,2	99,0	0,1	99,5	

Условия проведения экспериментов: $[Cr^{3+}] = 20$ мг/л; $[Ni^{2+}] = 20$ мг/л; $[Cu^{2+}] = 20$ мг/л; $i_{o6} = 0,4$ А/л; $[\sum Me^{n+}]$: [M-10] = 1: [0,03].

Установлено, что максимальные степени извлечения малорастворимых соединений металлов ($\alpha = 99,0–99,9$ %) достигаются за 8 минут электрофлотации.

На рис. 1 представлены обобщающие данные по электрофлотационному извлечению малорастворимых соединений хрома из 3-х компонентных систем.

Таким образом, определены оптимальные условия электрофлотационного процесса извлечения частиц малорастворимых соединений хрома (III) в составе многокомпонентных систем, при которых степень извлечения частиц повышается с 4,5-65 до 98–99 %, а продолжительность процесса сокращается с 12–15 до 3–8 мин, производительность процесса увеличивается 2–3 раза.

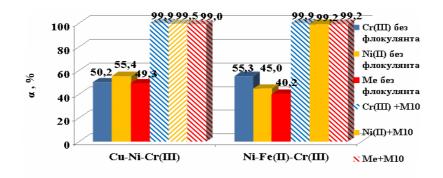


Рисунок 1 - Электрофлотационное извлечение малорастворимых соединений хрома из 3-х компонентных систем

Достигнутые значения остаточных концентраций ионов ниже допустимых значений ПДК культурно-бытового водопользования [2].

Работа выполнена при финансовой поддержке Минобрнауки России в рамках Соглашения о предоставлении субсидии № 14.577.21.0174 от 27 октября 2015 г., уникальный идентификатор соглашения RFMEFI57715X0174.

ЛИТЕРАТУРА

- 1. Колесников В.А., Ильин В.И., Капустин Ю.И. и др.. Электрофлотационная технология очистки сточных вод промышленных предприятий / Под ред. В.А. Колесникова. // М., Химия, 2007, 304 с.
- 2. Гусева Т.В., Молчанова Я.П., Заика Е.А. и др. Гидрохимические показатели состояния окружающей среды: справочные материалы. М.: Эколайн, 2000. 87 с.

УДК 537.52:661.7

Р.В. Якушин, ст. преп., канд. техн. наук; В.А. Колесников, проф., д-р техн. наук; В.А. Бродский, ст. научн. сотр., канд. хим. наук; А.В. Чистолинов, инж.; А.В. Перфильева, инж., канд. техн. наук (РХТУ им. Д.И. Менделеева, г. Москва)

ОКИСЛЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ В ВОДНЫХ РАСТВОРАХ ВОЗДЕЙСТВИЕМ БАРЬЕРНОГО РАЗРЯДА

Присутствие органических соединений в сточных водах промышленных производств оказывает негативное влияние на тонкий баланс экосистем водоемов, принимающих стоки. К наиболее вредоносным веществам стоит отнести соединения ароматического ряда, окисление которых крайне затруднено в естественных условиях.