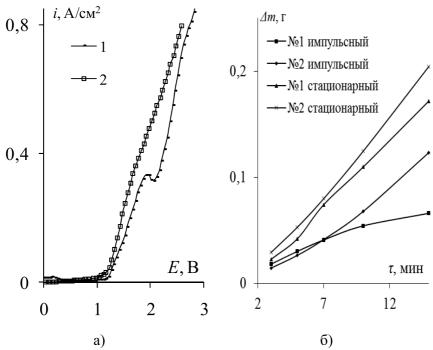
И.В. Антихович, ассист.; А.А. Черник, зав. кафедрой X,ТЭХПиМЭТ А.И. Волков, доц., канд. хим. наук (БГТУ, г. Минск)

ПРИМЕНЕНИЕ ИМПУЛЬСНОГО РЕЖИМА ЭЛЕКТРОЛИЗА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛИРОВАНИЯ НЕРЖАВЕЮЩЕЙ СТАЛИ


Электрохимической полирование является как отдельным видом финишной обработки поверхности, так и методом подготовки поверхности перед нанесением покрытий. Применение импульсного режима электролиза при полировании позволяет наряду со снижением трудоемкости изготовления деталей повысить качество и эксплуатационные характеристики поверхности. В настоящее время для электрохимического полирования нержавеющей стали в безхромовых электролитах чаще всего используют растворы на основе кислот с добавками органических и неорганических компонентов. Важным условием работоспособности электролита является определенная плотность (1,65 \, 1,68 г/см³).

Цель работы — изучить влияние импульсного режима электролиза на процесс полирование нержавеющей стали в безхромовых электролитах.

Электрохимические исследования осуществляли с помощью потенциостата Autolab 302 в стандартной трехэлектродной ячейке. Электрод сравнения — насыщенный хлоридсеребряный. Значения потенциалов пересчитывали в шкалу стандартного водородного электрода. Температура поддерживалась с помощью водяной бани БВ-04. Импульсный электролиз осуществляли на источнике питания KRAFT Klex. Время импульса 2 секунда, время паузы 1 секунда. Исследование микрорельефа проводили на профилометре-профилографе Абрис ПМ7. В качестве катодов и анодов использовались заготовки из стали AISI-304L размерами $30\times25\times2$ с исходной шероховатостью поверхности R_a 0,25 \square 0,4 мкм, которая обеспечивалась шлифованием наждачной бумагой с размером зерна 10 мкм. Величину съема металла определяли гравиметрическим методом.

Анодные поляризационные кривые нержавеющей стали представлены на рис. 1, *а*. На кривой 1, полученной в растворе № 1 можно выделить три участка характеризующие различные стадии процесса. Первый подъем кривой отвечает процессу растворения стали. Следствием этого является увеличение концентрации ионов металла в прианодном слое электролита и частичная пассивация электрода при потенциале 1,87 В. Область пассивности узкая и находится в диапазоне от 1,9 до 2,1 В. Второй подъем кривой наблюдается при плотности то-

ка 0,32 A/см² и указывает на начало нового процесса — разряда ионов кислорода. Выяснили, что выделение кислорода не влияет на качество полирования нержавеющей стали. У электролита состава № 2 область пассивации отсутствует.

а – Анодная поляризационная кривая нержавеющей стали;
б – Зависимость съема металла от времени электрополирования

Рисунок 1

Увеличение продолжительности полирования сопровождается пропорциональным возрастанием съема металла как в случае импульсного, так и стационарного электролиза (рис. $1, \delta$). При этом замена постоянного тока на нестационарный позволяет по истечении 15 минут снизить съем металла в 1,7 раза для электролита $\mathbb{N} 2$.

Для электролита № 1 подобная замена приводит к росту съема металла на 10%. Уменьшение съема металла происходит за счет введения паузы в случае импульсного электролиза. При увеличении времени полирования от 3 до 15 минут при импульсном режиме электролиза съем металла возрастает в 23 раза для состава № 1 и в 15 раз для состава № 2. Основные параметры шероховатости R_a , R_z представлены в табл. 1.

По полученным изображениям (рисунок 2) видно, что при увеличении плотности тока существенно меняется микроструктура поверхности, сглаживается микрорельеф. Увеличение плотности тока до 1,28 А/см² позволяет получить зеркальный блеск поверхности как в

случае стационарного (a, г) так и импульсного электролиза (ϵ , ϵ). Использование импульсного электролиза взамен стационарного позволяет сгладить топографию поверхности.

Таблица 1 — Зависимость параметров шероховатости R_a , R_z (мкм) от температуры электроимпульсного полирования и плотности тока $T_{\rm имп} = 2~{\rm cek}~T_{\rm паузы} = 1~{\rm cek}~R_a^{\rm ncx} = 0,241;~R_z^{\rm ncx} = 0,487$

имп — от паузы — от та					<u> </u>			
i, ,	Электролит № 1				Электролит № 2			
A/cm ²	R_a	R_z	R_a	R_z	R_a	R_z	R_a	R_z
0,4	0,135	0,636	0,139	0,429	0,167	0,418	0,129	0,455
0,6	0,108	0,484	0,158	0,360	0,150	0,361	0,173	0,512
0,8	0,220	0,531	0,087	0,378	0,097	0,556	0,133	0,353
1	0,087	0,477	0,101	0,391	0,114	0,478	0,235	0,411
1,2	0,074	0,568	0,127	0,456	0,065	0,434	0,081	0,441
1,4	0,075	0,487	0,052	0,512	0,147	0,356	0,063	0,370
T, °C	50		80		50		80	

Микроструктура поверхности при различных режимах электролиза представлена на рисунок 2.

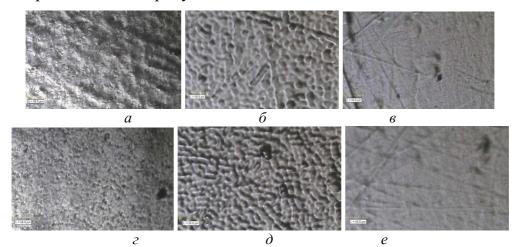


Рисунок 2 — Микроструктура поверхностей (х100), полученные при температуре электролита 80 °C в стационарном (a, z) и импульсном $(\delta, \epsilon, \partial, e)$ режимах, состава: $N = 1 - a - \epsilon$, N = 2 - c - e Плотность тока, A/cm^2 : $a - \epsilon - 0.9$, c - e - 1.28

Таким образом, применение импульсного электролиза и электролита на основе уксусной и ортофосфорной кислот позволяет получить поверхность с зеркальным блеском и параметром микрошероховатости R_a 0,052 мкм.

ЛИТЕРАТУРА

- 1. Электроимпульсное полирование сплавов на основе железа, хрома и никеля / Ю. В. Синькевич [и др.]. Минск : БНТУ, 2014. 325 с.
- 2. Гриллихес, С.Я. Полирование, травление и обезжиривание металлов. Л.: Машиностроение, 1971. 128 с.