Tran Dinh Phien, Postgraduate<sup>1</sup>; S.A. Shlykov, Prof., Doctor of Science<sup>1</sup>; B.A. Shainyan, Prof., Doctor of Science<sup>2</sup>

<sup>1</sup>Department of Physical and Colloidal Chemistry, Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, Sheremetievskiy Ave, 7, 153000, Ivanovo, Russian Federation. <sup>2</sup>A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Science, Favorsky Street, 1, 664033, Irkutsk, Russian Federation.

## CONFORMATIONAL PROPERTIES AND MOLECULAR STRUC-TURE OF 1-PHENYL-1-METHOXY-SILACYCLOHEXANE

The molecular structure and conformational behavior of a large number of 1-monosubstituted-silacyclohexanes has been investigated by various methods including NMR, electron diffraction, microwave, infrared, Raman spectroscopy and theoretical calculations. The conformational equilibrium of 1-phenylsilacyclohexane was found to be Ph<sub>eq</sub>:Ph<sub>ax</sub>= 78:22% by  $^{13}$ C NMR at 103K [1] and 62(10):38(10)% from gas-phase electron diffraction (GED) at 293K [2]. For 1-methoxysilacyclohexane the low temperature Raman analysis gives  $\Delta H_{\rm e\rightarrow a}$ = -0.11 kcal/mol [3], the quantum chemical (QC) calculations show that the axial conformer is energetically more stable by  $\Delta E$ =0.15 kcal/mol [4] and, from GED data, Ax:Eq=59(12):41(12)% [5]. In this work, the conformational behavior of 1-phenyl-1-methoxy-silacyclohexane 1 was studied by QC calculations.

The geometry and vibrational calculations were performed using DFT (with B3LYP-GD3 and M062X functionals) and MP2 methods with 6-311G\*\* and cc-pVTZ basic sets. According to the QC calculations, compound 1 may exist in five forms: g-Ph<sub>eq</sub> I, g-Ph<sub>ax</sub>-out II, tr-Ph<sub>eq</sub> III, tr-Ph<sub>ax</sub>-out IV and tr-Ph<sub>ax</sub>-in V, see Fig. 1. The relative total electron energies and free Gibbs energies are given in Table 1.

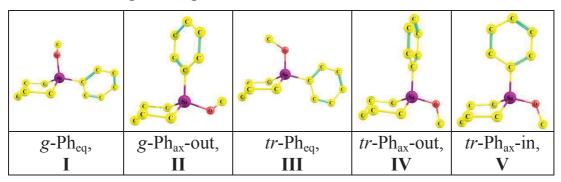



Fig. 1. Conformers of compound 1 (hydrogen atoms not indicated)

Table 1: Relative total electron energy and free Gibbs energy (kcal/mol) of conformers of 1

| or comormers or r  |            |       |      |      |      |                                 |       |       |      |      |
|--------------------|------------|-------|------|------|------|---------------------------------|-------|-------|------|------|
|                    | $\Delta E$ |       |      |      |      | $\Delta G^{\circ}(298\text{K})$ |       |       |      |      |
| Method/basis set   | Ι          | II    | III  | IV   | V    | Ι                               | II    | III   | IV   | V    |
| B3LYP-GD3/6-311G** | 0          | -0.06 | 0.86 | 1.02 | 0.83 | 0                               | -0.06 | -0.01 | 0.82 | 0.97 |
| B3LYP-GD3/cc-pVTZ  | 0          | 0.13  | 0.90 | 1.15 | 0.96 | 0                               | 0.21  | 0.16  | 0.81 | 1.00 |
| M062X/6-311G**     | 0          | -0.04 | 1.21 | 1.20 | 1.36 | 0                               | 0.06  | 1.26  | 1.14 | 1.19 |
| M062X/cc-pVTZ      | 0          | 0.15  | 1.29 | 1.31 | 1.54 | 0                               | 0.33  | 1.38  | 1.20 | 1.42 |
| MP2(FC)/6-311G**   | 0          | -0.50 | 1.52 | 0.68 | 1.33 | 0                               | 0.04  | 1.72  | 0.64 | 1.00 |

The B3LYP-GD3 calculations predict the conformer III as the most stable with  $\Delta G^{\circ}$  value of -0.01 to 0.16 kcal/mol relative to I, though the lowest vibrational frequency of this conformer is 10-12 cm<sup>-1</sup> for the methoxy group rotation around the Si-O bond which may predict incorrect  $\Delta G^{\circ}$  values in harmonic approximation. From the M06-2X calculations, the conformers I and II are most stable, and electron energies and Gibbs energies of other conformers (III, IV and V) are by 1.20-1.54 and 1.14-1.42 kcal/mol, respectively. In the case of MP2 level, the conformers I, II and III are most stable. It should be noted that sophistication of the basis set increases the  $\Delta E$  and  $\Delta G^{\circ}$  values.

It has to be pointed out, that when starting from the conformer V, the rotation of the methoxy group by more than 90° leads to immediate structure conversion to the  $Ph_{ax}$ -out, whereas starting from the latter keeps the twist orientation of the phenyl group. The energy barrier for  $II \rightarrow IV$  conversion was found to be ca. 2.33 kcal/mol (M062X/6-311G\*\*).

In the case of the equatorial conformers, the methoxy group rotation influences on rotation of the phenyl group. The energy barriers for the conversions  $I \rightarrow III$  and between the  $I' \rightarrow I''$  enantiomers are 1.50 and 1.66 kcal/mol, respectively (M062X/6-311G\*\*). On the other hand, the phenyl group rotation does not noticeably affect the methoxy group orientation.

## REFERENCES

- 1. Shainyan B.A., Kleinpeter E. *Tetrahedron*, **2012**, *68*, 114.
- 2. Shainyan B.A., Kirpichenko S.V., Osadchiy D.Y., Shlykov S.A. *Structural Chemistry*, **2014**, *25*, 1677.
- 3. Wallevik S.Ó. *Conformational behavior of substituted sila-cyclohexanes* (Doctoral diss., M. Sc. thesis, University of Iceland). **2008**.
- 4. Weldon A.J., Tschumper G.S. Int. J. Quant. Chem. 2007, 107, 2261.
- 5. Пучков Б.В., Жабанов Ю.А., Шлыков С.А., *Евраз. Союз Ученых (ЕСУ)*, *Сборник статей VII международн. конф.: VII международн. научно-практ. конфер.*, Москва, 27-30 декабря 2014, 88.