НЕАРГАНІЧНАЯ ХІМІЯ

УДК 541.124+546.431

ЦЗЭ У¹, Л. А. БАШКИРОВ¹, С. В. СЛОНСКАЯ²

ЭЛЕКТРОПРОВОДНОСТЬ И ТЕПЛОВОЕ РАСШИРЕНИЕ ВЫСОКОКОЭРЦИТИВНЫХ ФЕРРИТОВ Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉

¹Белорусский государственный технологический университет, ²Белорусский государственный аграрный технический университет

(Поступила в редакцию 21.05.2013)

Введение. Феррит стронция SrFe₁₂O₁₉ со структурой магнетоплюмбита является магнитотвердым материалом и из него изготавливают керамические постоянные магниты, которые широко используются в различных областях науки и техники [1–3]. С 90-х годов XX века и до настоящего времени перспективным направлением поиска новых магнитотвердых материалов является изучение твердых растворов на основе SrFe₁₂O₁₉, в котором ионы Sr²⁺ частично замещены ионами редкоземельного элемента Ln³⁺ (Ln – La, Nd, Pr, Sm), а эквивалентное количество ионов Fe³⁺ замещено ионами M²⁺ (M – Zn, Co, Mn, Cu). В работе [4] установлено, что в системе Sr_{1-x}La_xFe_{12-x}Zn_xO₁₉ увеличение степени замещения *x* до 0,3 приводит к постепенному повышению намагниченности и уменьшению коэрцитивной силы, и постоянный анизотропный магнит, изготовленный из твердого раствора Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉, имеет величину энергетического произведения (*BH*)_{max} = 41 кДж/м³. В работе [5] показано, что в системе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ частичное замещение ионов стронция Sr²⁺ ионами La³⁺ и ионов Fe³⁺ ионами Co²⁺ до *x* = 0,2 приводит к уменьшению намагниченности, но одновременно с этим происходит увеличение поля анизотропные постоянные магниты с величиной (*BH*)_{max} = 38,4 кДж/м³. В работе [6] изучены кристаллическая структура, магнитные свойства ферритов систем Sr_{1-x}La_xFe²⁺_{2-x}Co_xO₁₉ (Ln – La, Pr, Nd, Sm) и показано, что из исследованных ферритов систем Sr_{1-x}La_xFe²⁺₂, O₁₉ (Ln – La, Pr, Nd, Sm) и показано, что из исследованных ферритов гистем Sr_{1-x}La_xFe²⁺_{2-x}Co_xO₁₉ и показано, что из исследованных ферритов систем Sr_{1-x}En_xFe²⁺₂, O₁₉ (Ln – La, Pr, Nd, Sm) и показано, что из исследованных ферритов систем Sr_{1-x}La_xFe²⁺_{2-x}Co_xO₁₉ (*x* = 0; 0,1; 0,2; 0,3; 0,4;

В настоящей работе проведен синтез ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) со структурой магнетоплюмбита, изучены их кристаллическая структура, электропроводность на постоянном токе и тепловое расширение.

Методика эксперимента. Керамические образцы ферритов системы $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) синтезированы твердофазным методом из оксидов самария (Sm_2O_3), железа (Fe_2O_3), кобальта (Co_3O_4) и карбоната стронция ($SrCO_3$). Все реактивы имели квалификацию «ч. д. а.». Оксид самария перед взвешиванием прокаливали при температуре 1273 К в течение 3 ч. Перемешивание и помол исходных соединений, взятых в необходимом соотношении, проводили в планетарной мельнице «Puluerizette 6» фирмы Fritsch с добавлением этанола. Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 19 мм и высотой 5–7 мм, которые затем обжигали на подложках из оксида алюминия при температуре 1473 К на воздухе в течение 4 ч. После предварительного обжига таблетки дробили, мололи, прессовали в таблетки диаметром 9 мм, высотой 2–3 мм и бруски размером 5×5×30 мм³, которые обжигали на воздухе при 1473 К в течение 4 ч.

Электропроводность образцов измеряли четырехконтактным методом при постоянном токе на воздухе в интервале температур 300–1100 К. Тепловое расширение керамических образцов исследовали дилатометрическим методом на кварцевом дилатометре с индикатором часового типа в интервале температур 300–1100 К.

Результаты исследований и их обсуждение. Анализ рентгеновских дифрактограмм, полученных на дифрактометре Bruker D8 (излучение CuK_{α}), показал, что образцы с x < 0,2 были однофазными, а при $x \ge 0,2$ содержали также фазу α -Fe₂O₃, количество которой постепенно увеличивалось при повышении x до 0,5, в образцах с x = 0,4; 0,5 в небольшом количестве присутствовали фазы CoFe₂O₄, Sm₂O₃ и SmFeO₃.

Приведенные на рис. 1 зависимости удельной электропроводности (æ) от температуры T и lnæ от T^{-1} для образцов ферритов Sr_{1-r}Sm_rFe_{12-r}Co_rO₁₉ показывают, что электропроводность всех исследованных образцов ферритов с повышением температуры увеличивается и является полупроводниковой. Увеличение степени замещения х до 0,5 приводит к немонотонному уменьшению удельной электропроводности, например, при 900 К от 14,9·10⁻³ См·см⁻¹ для SrFe₁₂O₁₉ до $0.7 \cdot 10^{-3}$ См·см⁻¹ для x = 0.5. При этом наибольшее уменьшение электропроводности наблюдается при увеличении х от 0 до 0,1 (таблица). В случае перескокового механизма электропроводности ферритов величина электропроводности определяется концентрацией ионов Fe²⁺, находящихся в одной подрешетке с ионами Fe³⁺. В качестве подтверждения перескокового механизма электропроводности ферритов чаще всего приводится экспериментально установленный факт, что при повышении содержания ионов Fe²⁺ в ферритах наблюдается увеличение электропроводности. В связи с этим можно предположить, что уменьшение электропроводности образцов ферритов исследованной системы $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ при увеличении степени замещения до значения x = 0,1, т. е. в области их однофазности, можно связать с уменьшением концентрации ионов двухвалентного железа Fe²⁺. Для всех исследованных образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉ на прямолинейных зависимостях lnæ от T^{-1} (рис. 1, б) наблюдается излом при температуре $T_{\mu_{3}\mu_{7}}$ которая незначительно выше или меньше температуры Кюри для этих ферритов. При этом, как и в системе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ [7], наклон прямых зависимости lnæ от T^{-1} в области температур $T > T_{\mu_{3,T}}$ больше, чем для области температур $T < T_{_{изл}}$. Это указывает на более высокое значение энергии активации электропроводности ферритов $\mathrm{Sr}_{1-x}\mathrm{Sm}_x\mathrm{Fe}_{12-x}\mathrm{Co}_x\mathrm{O}_{19}$ для температур $T > T_{_{изл}}(E_{A2})$, чем для температур $T < T_{_{изл}}(E_{A1})$. Полученные результаты (таблица) показывают, что увеличение степени замещения x ионов Sr^{2+} в феррите $\mathrm{Sr}\mathrm{Fe}_{12}\mathrm{O}_{19}$ ионами Sm^{3+} и ионов Fe^{3+} ионами Co^{2+} от 0

Рис. 1. Зависимость удельной электропроводности α от температуры T(a) и ln α от $T^{-1}(\delta)$ ферритов $\operatorname{Sr}_{1-x}\operatorname{Sm}_{x}\operatorname{Fe}_{12-x}\operatorname{Co}_{x}\operatorname{O}_{19}$; x = 0 (1); 0,1 (2); 0,2 (3); 0,3 (4); 0,4 (5); 0,5 (6)

Энергия активации электропроводности ниже (E_{A1}) и выше (E_{A2}) температуры излома ($T_{_{\rm H3,D}}$), величина $\Delta E = E_{A2} - E_{A1}$, удельная электропроводность при 900 К, температура Кюри (T_C) для ферритов Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉

x	<i>Т</i> _{изл} , К	<i>Т_С</i> , К	<i>Е_{А1},</i> эВ	<i>Е_{А2}</i> , эВ	$\Delta E = E_{A2} - E_{A1}, \Im \mathbf{B}$	æ, См·см ⁻¹ ·10 ³
0	760	735	0,46	0,59	0,13	14,90
0,1	704	731	0,73	0,79	0,06	5,10
0,2	762	727	0,78	0,89	0,11	3,20
0,3	800	731	0,81	0,95	0,14	3,10
0,4	733	731	0,85	0,98	0,13	0,73
0,5	715	735	0,88	0,99	0,11	0,70

Рис. 2. Температурные зависимости относительного удлинения $\Delta l/l_0$ образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉ при x = 0 (*1*); 0,1 (*2*); 0,2 (*3*); 0,3 (*4*)

до 0,1 приводит к увеличению энергии активации электропроводности E_{A1} , E_{A2} : от значений 0,46 и 0,59 эВ соответственно для феррита $\mathrm{SrFe}_{12}\mathrm{O}_{19}$ до величин 0,73 и 0,79 эВ для твердого раствора $\mathrm{Sr}_{0,9}\mathrm{Sm}_{0,1}\mathrm{Fe}_{11,9}\mathrm{Co}_{0,1}\mathrm{O}_{19}$. Дальнейшее увеличение степени замещения *x* также приводит к повышению энергии активации электропроводности E_{A1} , E_{A2} , но в меньшей степени: от значений 0,78 и 0,89 эВ соответственно для $\mathrm{Sr}_{0,8}\mathrm{Sm}_{0,2}\mathrm{Fe}_{11,8}\mathrm{Co}_{0,2}\mathrm{O}_{19}$ до величин 0,88 и 0,99 эВ для $\mathrm{Sr}_{0,5}\mathrm{Sm}_{0,5}\mathrm{Fe}_{11,5}\mathrm{Co}_{0,5}\mathrm{O}_{19}$. Разница между E_{A2} и E_{A1} ($\Delta E = E_{A2} - E_{A1}$) при увеличении *x* изменяется незначительно (таблица).

Зависимости относительного удлинения ($\Delta l/l_0$) от температуры для всех образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉ практически линейны (рис. 2), что показывает об отсутствии в них структурных фазовых переходов в исследуемом интервале температур 400–1100 К. Проведенные расчеты показали, что коэффициент линейного теплового расширения (α) для ферритов Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉ при увеличении степени замещения *x* изменяется незначительно: от 1,20·10⁻⁵ K⁻¹ для SrFe₁₂O₁₉ до 1,27·10⁻⁵ K⁻¹ для Sr_{0.5}Sm_{0.5}Fe_{11.5}Co_{0.5}O₁₉.

Выводы. В интервале температур 300 – 1100 К измерена удельная электропроводность (æ) ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0-0,5). Установлено, что зависимость удельной электропроводности от температуры для всех исследованных ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0-0,5) является полупроводниковой. Энергия активации электропроводности, рассчитанная по линейным участкам зависимости lnæ от T^{-1} , которая имеет излом при температуре, близкой к температуре Кюри, в области температур выше температуры излома ($T_{изл}$) на 0,06–0,14 эВ, больше энергии активации электропроводности при температуры $T_{изл}$. Коэффициент линейного теплового расширения (α) для ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ при увеличении степени замещения x изменяется незначительно: от 1,20·10⁻⁵ K⁻¹ для $SrFe_{12}O_{19}$ до 1,27·10⁻⁵ K⁻¹ для $Sr_{0.5}Sm_{0.5}Fe_{11.5}Co_{0.5}O_{19}$.

Литература

1. Смит Я., Вейн Х. Ферриты. Физические свойства и практическое применение. М.: ИЛ, 1962.

2. Летюк Л. М. и др. Металлургия. М., 1994.

3. Крупичка С. Физика ферритов и родственных им магнитных окислов М.: Мир, 1976. Т. 2.

4. *Taguchi H.* et al. // 7th International Conference on Ferrites, Bordeaux, 3–6 september 1996 / Bordeaux Convention Center France. Bordeaux, 1996. P. 3–4.

5. Obara J., Yamamoto H. // J. of the Japan Society of Powder and Powder Metallurgy. 2000. Vol. 47, N 7. P. 796-800.

6. Wang J. F. // J. of Alloys and Compounds. 2005. Vol. 403, Iss. 1. P. e104-e109.

7. Башкиров Л. А. и др. // Свиридовские чтения. Минск: БГУ, 2008. С. 100-106.

ZE WU, L. A. BASHKIROV, S. V. SLONSKAYA

ELECTRIC CONDUCTIVITY AND THERMAL EXPANSION OF HIGHLY COERCIVE FERRITES Sr_{1-x}Sm_xFe_{12-x}Co_xO₁₉

Summary

Specific electric conductivity (æ) of $\text{Sr}_{1-x}\text{Sm}_x\text{Fe}_{12-x}\text{Co}_x\text{O}_{19}$ ferrites has been measured in the 300–1100 K temperature range. It has been determined that conductivity activation energy for $\text{Sr}_{1-x}\text{Sm}_x\text{Fe}_{12-x}\text{Co}_x\text{O}_{19}$ ferrites (x = 0-0,5) in the temperature range above the Fracture temperature (T_{frac}) is 0,06–0,14 eV higher than the activation energy in the temperature range below the T_{frac} . The coefficient of linear thermal expansion (α) for $\text{Sr}_{1-x}\text{Sm}_x\text{Fe}_{12-x}\text{Co}_x\text{O}_{19}$ ferrites changes slightly when x is increased: from 1,20·10⁻⁵ K⁻¹ for $\text{SrFe}_{12}\text{O}_{19}$ to 1,27·10⁻⁵ K⁻¹ for $\text{Sr}_{0,5}\text{Sm}_{0,5}\text{Fe}_{11,5}\text{Co}_{0,5}\text{O}_{19}$.