УДК 549.5:54-165:536.413:537.31/.32

А. И. КЛЫНДЮК¹, Е. А. ЧИЖОВА¹, Е. А. ТУГОВА^{2,3}

ВЛИЯНИЕ ВЗАИМОЗАМЕЩЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ НА СТРУКТУРУ И СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ (Pr, Nd, Sm)BaCoFeO₅₊₈

¹Белорусский государственный технологический университет, ²Физико-технический институт им. А. Ф. Иоффе РАН, ³Санкт-Петербургский государственный технологический институт (технический университет)

(Поступила в редакцию 02.07.2013)

Кислороддефицитные двойные перовскиты типа 0112, представителями которых являются слоистые феррокобальтиты редкоземельных элементов (РЗЭ) и бария LnBaCoFeO_{5+δ} (Ln – РЗЭ), представляют интерес в качестве основы для разработки новых полупроводниковых электродных материалов для твердооксидных топливных элементов [1], химических газовых сенсоров [2], а также высокотемпературных термоэлектрогенераторов [3], что обусловливает значительный интерес к этим соединениям.

Функциональные характеристики оксидных материалов могут быть существенно улучшены при изо- или гетеровалентном замещении катионов в их структуре [4, 5], вследствие чего разработка методов химической модификации слоистых перовскитных оксидов является актуальной задачей, представляющей большое научное и практическое значение.

Цель настоящей работы – изучение влияния взаимозамещения РЗЭ на кристаллическую структуру, кислородную нестехиометрию, тепловое расширение, электропроводность и термо-ЭДС твердых растворов слоистых феррокобальтитов (Pr, Nd, Sm)BaCoFeO_{5+δ}.

Керамические образцы феррокобальтитов РЗЭ и бария LnBaCoFeO_{5+δ} (Ln – Pr, Nd, Sm) и твердых растворов на их основе $Pr_{0.5}Nd_{0.5}BaCoFeO_{5+\delta}$, $Pr_{0.5}Sm_{0.5}BaCoFeO_{5+\delta}$, $Nd_{0.5}Sm_{0.5}BaCoFeO_{5+\delta}$, $Pr_{0.33}Nd_{0.33}Sm_{0.33}BaCoFeO_{5+\delta}$ синтезировали из оксидов Pr_6O_{11} (х. ч.), Nd_2O_3 (х. ч.), Sm_2O_3 (х. ч.), Fe_2O_3 (ос. ч. 2–4), Co_3O_4 (ч. д. а.) и BaCO_3 (ч.) на воздухе в интервале температур 1173–1473 К по методике [6]. Идентификацию образцов и определение параметров их кристаллической структуры проводили с помощью рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK_{α} -излучение). Кажущуюся плотность образцов ($\rho_{3\kappaсn}$) находили по их массе и геометрическим размерам. Тепловое расширение, электропроводность и термо-ЭДС спеченной керамики изучали на воздухе в интервале температур 300–1100 К по методикам, описанным в [3, 6]. Значения коэффициентов линейного теплового расширения (КЛТР, α), энергии активации электропроводности (E_A) и термо-ЭДС (E_S) находили из линейных участков зависимостей $\Delta l/l_0 = f(T)$, $ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно.

После заключительной стадии отжига образцы (Pr, Nd, Sm)BaCoFeO_{5+δ} были однофазными в пределах точности РФА и имели тетрагонально искаженную структуру перовскита ($a \approx a_p$, $c \approx 2a_p$, c < 2a), причем параметры их элементарной ячейки в целом уменьшались при снижении среднего ионного радиуса РЗЭ в их структуре (табл. 1, рис. 1), что обусловлено «лантанидным сжатием» (согласно [7], значения ионных радиусов Pr³⁺, Nd³⁺ и Sm³⁺ составляют 0,114, 0,112 и 0,109 нм соответственно для к. ч. 8). При этом на зависимостях $a = f(R_{Ln}^{3+})$, $c = f(R_{Ln}^{3+})$ для твердых растворов Pr_{0,5}Nd_{0,5}BaCoFeO_{5+δ}, Nd_{0,5}Sm_{0,5}BaCoFeO_{5+δ} (рис. 1, кривые *1*, *2*) отмечаются выраженные максимумы, откуда следует, что для исследованных твердых растворов наблюдаются положительные отклонения от закона Вегарда, иначе говоря, эти фазы образуются с положительными отклонениями от идеальности. Согласно данным йодометрии, содержание слабосвязанного кислорода (δ) в образцах в целом снижалось при уменьшении R_{Ln}^{3+} (табл. 1, рис. 1, кривая *3*) и было наименьшим для самарийсодержащих твердых растворов ($\delta = 0,23-0,30$).

Формула	δ	а, нм	С, НМ	c/2a	<i>V</i> , нм ³	$ ho_{ m эксп},$ г/см ³
PrBaCoFeO _{5+δ}	0,79	0,3918(2)	0,7725(5)	0,9858	0,1186(2	5,92
NdBaCoFeO _{5+δ}	0,65	0,3909(2)	0,7695(6)	0,9843	0,1176(2)	6,32
SmBaCoFeO _{5+δ}	0,37	0,3908(2)	0,7613(6)	0,9740	0,1162(2)	6,43
Pr _{0,5} Nd _{0,5} BaCoFeO _{5+δ}	0,74	0,3921(2)	0,7707(7)	0,9828	0,1185(2)	5,90
Pr _{0,5} Sm _{0,5} BaCoFeO _{5+δ}	0,23	0,3912(2)	0,7692(7)	0,9831	0,1177(2)	5,79
Nd _{0,5} Sm _{0,5} BaCoFeO _{5+δ}	0,23	0,3918(2)	0,7695(7)	0,9820	0,1181(2)	6,34
$\mathrm{Pr}_{0,33}\mathrm{Nd}_{0,33}\mathrm{Sm}_{0,33}\mathrm{BaCoFeO}_{5+\delta}$	0,30	0,3910(2)	0,7697(9)	0,9843	0,1177(2)	5,34

Таблица 1. Значения индекса кислородной нестехиометрии (δ), параметров кристаллической структуры (a, b, c, c/2a, V), а также кажущейся плотности (ρ_{эксп}) керамических образцов твердых растворов (Pr, Nd, Sm)BaCoFeO_{5+δ}

На температурных зависимостях относительного удлинения ($\Delta l/l_0 = f(T)$) фаз LnBaCoFeO_{5+ δ} (Ln = Pr, Nd, Sm) и твердого раствора Nd_{0.5}Sm_{0.5}BaCoFeO_{5+δ} наблюдался излом при температуре Т*, сопровождающийся возрастанием КЛТР образцов на 40-60 % (табл. 2). Обнаруженная аномалия теплового расширения феррокобальтитов РЗЭ-бария связана с выделением из их структуры слабосвязанного кислорода (δ) [8], поэтому возрастание их КЛТР при температурах выше Т* можно объяснить «химическим расширением» образцов. На зависимостях $\Delta l/l_0 = f(T)$ остальных образцов излом отсут-ствовал, а значения их КЛТР изменялись в пределах (1,54– 2,16)·10⁻⁵ К⁻¹, достигая максимального значения для твердого раствора Pr_{0.33}Nd_{0.33}Sm_{0.33}BaCoFeO_{5+δ} (табл. 2). Сопоставляя результаты дилатометрии с данными РФА, можно заметить, что КЛТР фаз (Pr,Nd,Sm)ВаСоFeO_{5+б} возрастает при увеличении размеров их элементарной ячейки и уменьшении содержания в них избыточного кислорода (б). Таким образом, увеличение длин связей металл-кислород и уменьшение средней степени окисления катионов переходных металлов в структуре этих фаз приводит к уменьшению энергии металлокислородных взаимодействий и увеличению степени ангармонизма колебаний металл-кислород в структуре слоистых оксидов (Pr, Nd, Sm)BaCoFeO_{5+δ}.

Рис. 1. Зависимости параметров *a* (1), *c* (2) элементарной ячейки и индекса кислородной нестехиометрии δ (3) феррокобальтитов (Pr, Nd, Sm)BaCoFeO_{5+ δ} от среднего ионного радиуса лантаноида в их структуре $R_{1,n^{3+}}$

Формула	α×10 ⁵ , K ⁻¹		T* 1/	E -D	E -D	E -D
	$T \le T^*$	$T^* < T$	1', К	<i>L</i> _A , эв	<i>L_S</i> , эв	<i>Е</i> _{<i>m</i>} , ЭВ
PrBaCoFeO _{5+δ}	1,68	2,54	820	0,126	0,016 (<i>T</i> < 610 K)	0,110 (<i>T</i> < 610 K)
					0,053 (T > 610 K)	0,073 (<i>T</i> > 610 K)
NdBaCoFeO _{5+δ}	1,66	2,65	650	0,118	0,007	0,111
SmBaCoFeO _{5+δ}	1,36	1,93	520	0,241	0,114	0,127
Pr _{0.5} Nd _{0.5} BaCoFeO _{5+δ}	1,92		-	0,202	0,079	0,123
Pr _{0.5} Sm _{0.5} BaCoFeO _{5+δ}	1,54		-	0,234	0,093	0,141
Nd _{0,5} Sm _{0,5} BaCoFeO _{5+δ}	1,76	2,45	760	0,197	0,061	0,136
Pr _{0.22} Nd _{0.22} Sm _{0.22} BaCoFeO ₅₊₈	2,16		_	0,157	0,060	0,097

Таблица 2. Значения коэффициентов линейного теплового расширения (α), а также энергий активации электропереноса (*E_A*, *E_S*, *E_m*) для керамических образцов твердых растворов (Pr, Nd, Sm)BaCoFeO_{5+δ}

Как видно из рис. 2, исследованные в работе слоистые феррокобальтиты РЗЭ-бария являются полупроводниками *p*-типа, характер электрической проводимости которых изменяется от полупроводникового ($\frac{\partial \sigma}{\partial T} > 0$) к металлическому ($\frac{\partial \sigma}{\partial T} < 0$), а термо-ЭДС начинает расти в области

Рис. 2. Температурные зависимости электропроводности (*a*) и термо-ЭДС (*б*) феррокобальтитов (Pr, Nd, Sm)BaCoFeO_{5+δ}: PrBaCoFeO_{5+δ}(*I*), NdBaCoFeO_{5+δ}(*2*), SmBaCoFeO_{5+δ}(*3*), Pr_{0,5}Nd_{0,5}BaCoFeO_{5+δ}(*4*), Pr_{0,5}Sm_{0,5}BaCoFeO_{5+δ}(*5*), Nd_{0,5}Sm_{0,5}BaCoFeO_{5+δ} (*b*), Pr_{0,33}Nd_{0,33}Sm_{0,33}BaCoFeO_{5+δ} (*7*). На врезках даны зависимости электропроводности (σ_{350}) (*a*) и термо-ЭДС (S_{350}) (*b*) фаз (Pr, Nd, Sm)BaCoFeO_{5+δ} от среднего ионного радиуса лантаноида в их структуре $R_{Ln^{3+}}$

высоких температур, что обусловлено выделением из образцов слабосвязанного кислорода [8]. Возрастание термо-ЭДС оксидов SmBaCoFeO_{5+δ}, $Pr_{0,5}Nd_{0,5}BaCoFeO_{5+\delta}$, $Nd_{0,5}Sm_{0,5}BaCoFeO_{5+\delta}$ в области температур до 420 К (рис. 2, δ) обусловлено, вероятно, изменением спинового состояния входящих в их состав катионов кобальта аналогично спиновым переходам катионов кобальта в перовскитых кобальтитах РЗЭ [9]. Следует отметить, что при высоких температурах электропроводность твердых растворов (Pr, Nd, Sm)BaCoFeO_{5+δ} заметно выше, а термо-ЭДС намного ниже, чем для граничных фаз LnBaCoFeO_{5+δ} (Ln = Pr, Nd, Sm) (рис. 2), что хорошо коррелирует с результатами РФА и дилатометрии. При температурах же, близких к комнатной, электрофизические свойства оксидов (Pr, Nd, Sm)BaCoFeO_{5+δ} немонотонно изменяются при изменении среднего радиуса катиона РЗЭ в их структуре (рис. 2, врезки), причем максимальное значение электропроводности демонстрирует оксид NdBaCoFeO_{5+δ}, а термо-ЭДС – фаза SmBaCoFeO_{5+δ}.

Проводимость слоистых феррокобальтитов РЗЭ-бария носит поляронный характер, при этом температурные зависимости электропроводности и термо-ЭДС описываются соотношениями

$$\sigma = {}^{A}/_{T} \exp(-{}^{E_{A}}/_{kT}), \quad S = {}^{k}/_{e} (-{}^{E_{S}}/_{kT} + B),$$

где $E_A = E_S + E_m$ и E_S – энергии активации соответственно электропроводности и термо-ЭДС, причем E_S представляет собой энергию возбуждения полярона, а E_m – энергию его переноса (при безактивационном переносе заряда поляронами большого радиуса $E_m \approx 0$; при $E_m > 0$ перенос заряда термически активирован и осуществляется поляронами малого радиуса (ПМР) по прыжковому механизму) [10].

Значения параметров электропереноса в фазах (Pr, Nd, Sm)ВаСоFеО_{5+δ} приведены в табл. 2. Как видно, энергии возбуждения и переноса ПМР в исследованных феррокобальтитах немонотонно изменяются при изменении их состава, причем в целом энергия возбуждения ПМР возрастает при уменьшении содержания в образцах кислорода (δ). Наименьшее значение E_S демонстрирует оксид NdBaCoFeO_{5+δ} ($E_S = 0,007$ эВ), а наибольшее – фаза SmBaCoFeO_{5+δ} ($E_S = 0,114$ эВ). Наименее затруднен перенос ПМР в соединении PrBaCoFeO_{5+δ} при повышенных температурах ($E_m = 0,073$ эВ), а наиболее затруднен в твердом растворе $Pr_{0,5}Sm_{0,5}BaCoFeO_{5+\delta}$ ($E_m = 0,141$ эВ).

Таким образом, в работе синтезированы феррокобальтиты РЗЭ-бария (Pr,Nd,Sm)BaCoFeO_{5+δ}, определены параметры их кристаллической структуры и кислородная стехиометрия, изучены их тепловое расширение и электрофизические свойства. Показано, что образование твердых растворов (Pr,Nd,Sm)BaCoFeO_{5+δ} протекает с положительными отклонениями от идеальности, а их структурными характеристиками, тепловыми и электрическими свойствами можно управлять путем направленного замещения одного РЗЭ другим.

Литература

1. Zhou Q., He T., He Q., J i Y. // Electrochem. Commun. 2009. Vol. 11. P. 80-83.

2. Klyndziuk A., Petrov G., Kurhan S. et al. // Chemical Sensors. 2004. Vol. 20. Suppl. B. P. 854-855.

3. Клындюк А. И., Чижова Е. А., Сазанович Н. В., Красуцкая Н. С. // Термоэлектричество. 2009. № 3. С. 76-84.

4. Tugova E. A., Gusarov V. V. // J. Alloys and Comp. 2011. Vol. 509. P. 1523-1528.

5. Klynduk A. I. // in: Advances in Chemistry Research. Vol. 5. Ed. J. C. Taylor. Nova Science Publishers. New York, 2010. P. 59–105.

6. Клындюк А. И., Чижова Е. А. // Физика твердого тела. 2009. Т. 59, вып. 4. С. 625-629.

7. Shannon R. D., Prewitt C. T. // Acta Cryst. 1969. Vol. B25, Pt. 5. P. 946-960.

8. Клындюк А. И., Чижова Е. А. // Неорган. материалы 2006. Т. 42, № 5. С. 611–622.

9. Itoh M., Hashimoto J., Yamaguchi S., Tokura Y. // Physica B. 2000. Vol. 281–282. P. 510–511.

10. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982.

A. I. KLYNDYUK, Ye. A. CHIZHOVA, E. A. TUGOVA

EFFECT OF RARE EARTH ELEMENT INTERSUBSTITUTION ON STRUCTURE AND PROPERTIES OF (Pr, Nd, Sm)BaCoFeO_{5+δ} SOLID SOLUTIONS

Summary

Using the solid-state reaction method, (Pr,Nd,Sm)BaCoFeO_{5+ δ} solid solutions have been synthesized, their lattice constants and oxygen nonstoichiometry have been determined and their thermal expansion and electrical properties have been studied. It has been found that (Pr,Nd,Sm)BaCoFeO_{5+ δ} solid solutions show positive deviations from ideality and their structural parameters, thermal and electrotransport properties can be controlled by intersubstitution of rare earth elements in their structure.