НЕАРГАНІЧНАЯ ХІМІЯ

УДК 549.5:54-165.2:536.413:537.31/.32:666.654

А. И. КЛЫНДЮК, И. В. МАЦУКЕВИЧ

СИНТЕЗ, СТРУКТУРА И СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ

Белорусский государственный технологический университет

(Поступила в редакцию 02.09.2014)

Перспективной основой для разработки *p*-ветвей термоэлектрогенераторов, функционирующих при повышенных температурах, является слоистый кобальтит кальция $Ca_3Co_4O_{9+\delta}$, поскольку это соединение характеризуется одновременно высокими значениями электропроводности (σ) и коэффициента термо-ЭДС (*S*), низкой теплопроводностью (λ), а также, в отличие от традиционных термоэлектриков на основе халькогенидов тяжелых металлов, устойчиво к окислению атмосферным кислородом [1, 2]. Функциональные свойства керамики на основе $Ca_3Co_4O_{9+\delta}$ могут быть улучшены за счет использования «мягких», низкотемпературных методов синтеза [3], а также при частичном замещении в его структуре ионов кальция ионами висмута [4, 5] или редкоземельных элементов (РЗЭ) [6, 7], а ионов кобальта – ионами других *3d*-металлов [8, 9].

Цель настоящей работы – изучение влияния частичного замещения в слоистом кобальтите кальция ионов кальция ионами натрия, меди, свинца и висмута на кристаллическую структуру и физико-химические свойства образующихся при таком замещении твердых растворов $(Ca,M)_3Co_4O_{q+\delta}$ (M = Na, Cu, Pb, Bi).

Порошки кобальтитов $Ca_3Co_4O_{9+\delta}$, $Ca_{2,8}Cu_{0,2}Co_4O_{9+\delta}$ и $Ca_{2,8}Pb_{0,2}Co_4O_{9+\delta}$ синтезировали цитратным методом [7, 9] из $C_6H_8O_7$ (ч.), $Ca(NO_3)_2\cdot 4H_2O$ (ч.д.а.), $Co(NO_3)_2\cdot 6H_2O$ (ч.д.а.), CuO (ч.) (преварительно растворенного в HNO₃ (ч.д.а.)) и Pb(NO₃)₂ (х.ч.), а твердых растворов $Ca_{2,7}Na_{0,3}Co_4O_{9+\delta}$, $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$ и $Ca_{2,7}Na_{0,15}Bi_{0,15}Co_4O_{9+\delta}$ – методом твердофазных реакций [5] из $CaCO_3$ (ч.), Co_3O_4 (ч.), Bi_2O_3 (ч.), и Na_2CO_3 (ч.д.а.). Спекание керамики осуществляли на воздухе в интервале температур 1183–1193 К в течение 8–12 ч [5, 7, 9].

Идентификацию образцов и определение параметров их кристаллической структуры проводили с помощью рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK_α-излучение). Кажущуюся плотность образцов ($\rho_{\rm k}$) определяли по их массе и геометрическим размерам. Электропроводность (σ) и коэффициент термо-ЭДС (S) спеченной керамики изучали в интервале температур 300–1100 K, а теплопроводность (λ) – при 298–423 K по методикам, описанным в [5, 7, 9]. Решеточную ($\lambda_{\rm pem}$) и электронную ($\lambda_{\rm sn}$) составляющие теплопроводности вычисляли по формулам $\lambda = \lambda_{\rm sn} + \lambda_{\rm pem}$, $\lambda_{\rm sn} = \sigma LT$, где L – число Лоренца ($L = 2,45 \cdot 10^{-8}$ Br·Oм·K⁻²). Величины энергии активации электропроводности ($E_{\rm A}$) образцов находили из линейных участков зависимостей ln(σT) = f(1/T) соответственно. Значения фактора мощности (P) и показателя термоэлектрической добротности (ZT) кобальтитов (Ca,M)₃Co₄O_{9+ δ} (M = Na, Cu, Pb, Bi) рассчитывали по выражениям $P = S^2 \sigma$ и $ZT = (PT)/\lambda$ соответственно.

После заключительной стадии обжига при температурах 1183–1193 К керамические образцы $Ca_3Co_4O_{9+\delta}$, $Ca_{2,8}Cu_{0,2}Co_4O_{9+\delta}$, $Ca_{2,8}Pb_{0,2}Co_4O_{9+\delta}$, $Ca_{2,7}Na_{0,3}Co_4O_{9+\delta}$, $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$ и $Ca_{2,7}Na_{0,15}Bi_{0,15}Co_4O_{9+\delta}$ были в пределах погрешности РФА однофазными, а их структура соответствовала структуре слоистого кобальтита кальция [10] (рис. 1). Параметры элементарной

Рис. 1. Рентгеновские дифрактограммы (CuK_{α}-излучение) кобальтита кальция Ca₃Co₄O_{9+ δ} (*1*) и твердых растворов Ca_{2,7}Na_{0,3}Co₄O_{9+ δ} (*2*), Ca_{2,7}Na_{0,15}Bi_{0,15}Co₄O_{9+ δ} (*3*), Ca_{2,8}Cu_{0,2}Co₄O_{9+ δ} (*4*)

ячейки твердых растворов $(Ca,M)_3Co_4O_{9+\delta}$ (M = Na, Cu, Pb, Bi) были в целом выше, чем для незамещенного кобальтита кальция (таблица), что хорошо согласуется с радиусами замещаемого и замещающих ионов (согласно [11], для к.ч. = 6 радиусы ионов Ca²⁺, Na⁺, Bi³⁺ и Pb²⁺ составляют 0,100, 0,102, 0,102 и 0,120 нм соответственно).

Значения параметров кристаллической структуры (a, b₁, b₂, c, β, V, b₁/b₂), кажущейся плотности (ρ_κ) и энергии активации электропроводности (E_A) слоистого кобальтита кальция и твердых растворов на его основе

Состав	а, нм	<i>b</i> ₁ , нм	<i>b</i> ₂ , нм	С, НМ	β, °	<i>V</i> , нм ³	b_1/b_2	ρ _к , г/см ³	E_A , эВ
CCO	0,4830(7)	0,4562(8)	0,2812(6)	1,085(1)	98,28(8)	0,2365(10)	1,622	3,18	0,065
CNCO	0,4823(8)	0,4536(9)	0,2808(9)	1,101(1)	99,10(1)	0,2379(9)	1,616	3,39	0,083
CBCO	0,4854(7)	0,4588(7)	0,2827(5)	1,090(1)	98,16(8)	0,2402(9)	1,623	2,78	0,073
CNBCO	0,4831(7)	0,4552(8)	0,2840(9)	1,089(1)	98,15(8)	0,2370(9)	1,603	2,84	0,083
CCCO	0,4838(7)	0,4573(8)	0,2833(8)	1,083(1)	98,19(8)	0,2370(10)	1,614	3,01	0,069
СРСО	0,4826(6)	0,4564(7)	0,2827(9)	1,092(1)	98,39(8)	0,2380(9)	1,614	3,14	0,094

Кажущаяся плотность керамики на основе кобальтита кальция изменялась в пределах 2,78–3,39 г/см³ (таблица), возрастая при частичном замещении $Na^+ \rightarrow Ca^{2+}$ и уменьшаясь во всех остальных случаях, из чего можно сделать заключение, что частичное замещение кальция натрием в $Ca_3Co_4O_{9+\delta}$ улучшает спекаемость образующихся при этом твердых растворов.

Как видно из рис. 2, *a*, *б*, кобальтиты (Ca,M)₃Co₄O_{9+δ} (M = Na, Cu, Pb, Bi) являются полупроводниками *p*-типа, характер проводимости которых при высоких температурах изменяется на металлический, что обусловлено выделением части кислорода из образцов в окружающую среду, а коэффициент термо-ЭДС возрастает при увеличении температуры. Проводимость твердых растворов Ca_{2,7}Bi_{0,3}Co₄O_{9+δ} и Ca_{2,8}Cu_{0,2}Co₄O_{9+δ} была близка к проводимости незамещенного кобальтита кальция и значительно уменьшалась в остальных случаях (рис. 2, *a*), а максимальным значением коэффициента термо-ЭДС характеризовался твердый раствор Ca_{2,8}Pb_{0,2}Co₄O_{9+δ} – 0,32 мB/K при температуре 1100 K, что на 60% больше, чем для Ca₃Co₄O_{9+δ} при той же температуре (рис. 2, *б*). Величина энергии активации электропроводности для слоистого кобальтита кальция составила 0,069 эВ, а для твердых растворов на его основе возрастала, изменяясь в пределах 0,073–0,094 эВ (таблица), из чего следует, что создание дефектов замещения в структуре Ca₃Co₄O_{9+δ} затрудняет перенос в нем заряда.

Величина фактора мощности оксидной керамики увеличивалась с ростом температуры и достигала наибольшего значения для твердого раствора состава $Ca_{2,8}Pb_{0,2}Co_4O_{9+\delta} - 0,13 \text{ MBT/(M}\times\text{K}^2)$ при температуре 1100 К, что на 70% выше, чем для базового кобальтита кальция при той же температуре, что обусловлено высоким значением коэффициента термо-ЭДС этого твердого раствора (рис. 2, *в*).

Рис. 2. Температурные зависимости электропроводности σ (*a*), коэффициента термо-ЭДС *S* (*б*) и фактора мощности *P* (*в*) керамики состава Ca₃Co₄O_{9+δ} (*1*), Ca_{2,7}Na_{0,3}Co₄O_{9+δ} (*2*), Ca_{2,7}Bi_{0,3}Co₄O_{9+δ} (*3*), Ca_{2,7}Na_{0,15}Bi_{0,15}Co₄O_{9+δ} (*4*), Ca_{2,8}Cu_{0,2}Co₄O_{9+δ} (*5*), Ca_{2,8}Pb_{0,2}Co₄O_{9+δ} (*6*)

Теплопроводность твердого раствора Ca_{2,7}Na_{0,3}Co₄O_{9+δ} в интервале температур 298–423 К изменялась в пределах 1,35–1,37 Вт/(м×К), что на 60% больше, чем для незамещенного Ca₃Co₄O_{9+δ} (рис. 3, *a*), при этом решеточная составляющая теплопроводности этого твердого раствора, как и базового кобальтита кальция, была преобладающей ($\lambda_{\text{реш}}/\lambda \approx 0,99$ и 0,98 для Ca_{2,7}Na_{0,3}Co₄O_{9+δ} и Ca₃Co₄O_{9+δ} соответственно). Таким образом, частичное замещение в слоистом кобальтите кальция ионов Ca²⁺ более легкими ионами Na⁺ приводит к значительному ослаблению рассеяния фононов в структуре образующегося при таком замещении твердого раствора.

Значения показателя термоэлектрической добротности кобальтита $Ca_{2,7}Na_{0,3}Co_4O_{9+\delta}$ увеличивались с ростом температуры и в интервале температур 348–423 К были ниже, чем для $Ca_3Co_4O_{9+\delta}$ (рис. 3, *б*). Экстраполяция зависимостей $\lambda = f(T)$ в область высоких температур позволяет получить оценочные значения *ZT*, которые при температуре 1100 К составляют 0,096 и 0,042 для $Ca_3Co_4O_{9+\delta}$ и $Ca_{2,7}Na_{0,3}Co_4O_{9+\delta}$ соответственно. Как видно, частичное замещение $Na^+ \rightarrow Ca^{2+}$ в слоистом кобальтите кальция не приводит к улучшению термоэлектрических характеристик образующихся при этом твердых растворов (Ca,Na)₃Co₄O_{9+ δ}, однако может быть использовано при совместном замещении ионов кальция в $Ca_3Co_4O_{9+\delta}$ ионами других металлов, так как улучшает спекаемость керамики (действительно, $\rho_{\kappa}(Ca_{2,7}Na_{0,15}Bi_{0,15}Co_4O_{9+\delta}) > \rho_{\kappa}(Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta})$, таблица).

Таким образом, в работе твердофазным и цитратным методами синтезированы кобальтиты составов $Ca_3Co_4O_{9+\delta}$, $Ca_{2,8}Cu_{0,2}Co_4O_{9+\delta}$, $Ca_{2,8}Pb_{0,2}Co_4O_{9+\delta}$, $Ca_{2,7}Na_{0,3}Co_4O_{9+\delta}$, $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$

Рис. 3. Температурные зависимости теплопроводности λ (*a*) и безразмерного показателя добротности *ZT* (*б*) керамики Ca₃Co₄O_{9+δ} (*l*-4) и Ca_{2,7}Na_{0,3}Co₄O_{9+δ} (*5*-8): λ (*l*, 5), λ_{pem} (2, 6), $\lambda_{_{37}}$ (3, 7), *ZT* (4, 8)

и Ca_{2,7}Na_{0,15}Bi_{0,15}Co₄O_{9+δ}, определены параметры их кристаллической структуры, изучены их электропроводность и термо-ЭДС. Показано, что наилучшими термоэлектрическими характеристиками обладает твердый раствор Ca_{2,8}Pb_{0,2}Co₄O_{9+δ}, коэффициент термо-ЭДС и фактор мощности которого при 1100 К составляют 0,32 мВ/К и 0,13 мВт/(м×K²), что на 60 и 70% соответственно выше, чем для базовой фазы Ca₃Co₄O_{9+δ} при той же температуре. Установлено, что частичное замещение кальция натрием увеличивает теплопроводность и улучшает спекаемость образующейся при таком замещении керамики.

Авторы выражают благодарность В. М. Кононовичу (БГТУ) за запись рентгеновских дифрактограмм образцов и Л. Е. Евсеевой (ИТМО им. А. В. Лыкова НАН Беларуси) за измерение теплопроводности керамики составов Ca₃Co₄O_{9+δ} и Ca_{2,7}Na_{0,3}Co₄O_{9+δ}. Работа выполнена при поддержке ГПНИ «Функциональные и машиностроительные материалы, наноматериалы» (подпрограмма «Кристаллические и молекулярные структуры», задание 1.21).

Литература

- 1. Koumoto K., Terasaki I., Murayama N. (eds.) Oxide Thermoelectrics. Trivandrum, India, Research Signpost. 2002.
- 2. Fergus J. W. // J. Eur. Ceram. Soc. 2012. Vol. 32. P. 525-540.
- 3. Zhang Y. F., Zhang J. X., Lu Q. M., Zhang Q. Y. // Mater. Lett. 2006. Vol. 60. P. 2443-2446.
- 4. Park J. W., Kwak D. H., Yoon S. H., Choi S. C. // J. Ceram. Soc. Jap. 2009. Vol. 117, N 5. P. 643-646.
- 5. Клындюк А. И., Мацукевич И. В. // Весці НАН Беларусі. Сер. хім. навук. 2012. № 3. С. 11-16.
- 6. Prevel M., Perez O., Noudem J. G. // Solid State Sci. 2007. Vol. 9. P. 231-235.
- 7. Клындюк А. И., Мацукевич И. В. // Неорган. материалы. 2012. Т. 48, № 10. С. 1181–1186.
- 8. Wang Y., Sui Y., Ren P. et al. // Chem. Mater. 2010. Vol. 22. P. 1155–1163.
- 9. Мацукевич И. В., Клындюк А. И. // Термоэлектричество. 2013. № 3. С. 50-57.
- 10. Massett A. C., Miche l C., Maignan A. et al. // Phys. Rev. B. 2000-I. Vol. 62, N 1. P. 166-175.
- 11. Shannon R. D., Prewitt C. T. // Acta Cryst. 1969. Vol. B25. Pt. 5. P. 946–960.

A. I. KLYNDYUK, I. V. MATSUKEVICH

SYNTHESIS, STRUCTURE AND PROPERTIES OF THE SOLID SOLUTIONS BASED ON LAYERED CALCIUM COBALTITE

Summary

The $(Ca,M)_3Co_4O_{9+\delta}$ (M = Na, Cu, Pb, Bi) solid solutions have been synthesized, their lattice constants have been determined and their electric conductivity and thermo-EMF were studied in 300–1100 K temperature interval. It has been found that $Ca_{2,8}Pb_{0,2}Co_4O_{9+\delta}$ solid solution possessed the greatest thermo-EMF coefficient of 0,32 mV/K at 1100 K. Activation energies of electrical conductivity and power factor of ceramics studied have been calculated.