НЕАРГАНІЧНАЯ ХІМІЯ

УДК 541.1+621.785.36+621.78.011

Е. К. ЮХНО¹, Л. А БАШКИРОВ¹, П. П. ПЕРШУКЕВИЧ², Н. А. МИРОНОВА-УЛМАНЕ³, А. Г. ШАРАКОВСКИЙ³

СПЕКТРЫ ВОЗБУЖДЕНИЯ И ФОТОЛЮМИНЕСЦЕНЦИИ ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ ИНДАТА ЛАНТАНА СО СТРУКТУРОЙ ПЕРОВСКИТА, ЛЕГИРОВАННОГО ИОНАМИ Pr³⁺, Nd³⁺, Cr³⁺

¹Белорусский государственный технологический университет, Минск, Беларусь, e-mail: bashkirov@belstu.by ²Институт физики им. Б. И. Степанова НАН Беларуси, Минск, Беларусь, e-mail: p.persh@ifanbel.bas-net.by ³Институт физики твердого тела Латвийского университета, Рига, Латвия, e-mail: anatolijs.sarakovskis@cfi.lu.lv

Исследованы спектры возбуждения и фотолюминесценции твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$, $LaIn_{0,99}Cr_{0,01}O_3$. Установлено, что ионы Cr^{3+} , введенные в подрешетку ионов In^{3+} твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$, являются сенсибилизаторами фотолюминесценции ионов Nd^{3+} при их возбуждении светом видимой области спектра ($\lambda = 445$ нм).

Ключевые слова: индат лантана, твердый раствор, спектры возбуждения и фотолюминесценции, сенсибилизатор.

E. K. YUKHNO¹, L. A. BASHKIROV¹, P. P. PERSHUKEVICH², N. MIRONOVA-ULMANE³, A. SARAKOVSKIS³

EXCITATION AND PHOTOLUMINESCENCE SPECTRA OF SOLID SOLUTIONS BASED ON LANTHANUM INDATE WITH PEROVSKITE STRUCTURE DOPED BY Pr³⁺, Nd³⁺, Cr³⁺ IONS

¹Belarusian State Technological University, Minsk, Belarus, e-mail: bashkirov@belstu.by ²B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk, Belarus, e-mail: p.persh@ifanbel.bas-net.by

³Institute of Solid State Physics, University of Latvia, Riga, Latvia, e-mail: anatolijs.sarakovskis@cfi.lu.lv

Excitation and photoluminescence spectra of $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$, $La_{0,97}Pr_{0,003}Nd_{0,02}InO_3$, $La_{0,97}Pr_{0,00$

Keywords: lanthanum indate, solid solution, excitation and photoluminescence spectra, sensitizer.

Введение. В последнее десятилетие значительно повысился интерес к исследованиям спектров возбуждения люминесценции, спектров фотолюминесценции твердых растворов на основе LaInO₃ с кристаллической структурой орторомбически искаженного перовскита, легированного ионами редкоземельных элементов Pr^{3+} , Sm^{3+} , Eu^{3+} , Tb^{3+} , излучающих свет в видимой области [1–4]. В меньшей степени исследованы фотолюминесцентные свойства твердых растворов на основе LaInO₃, легированного ионами Nd³⁺, излучающих свет в ИК-области спектра (1,06 мкм), а также ионами Cr^{3+} , выполняющих роль сенсибилизатора или активатора [5, 6]. В литературе отсутствуют публикации работ, посвященных исследованию фотолюминесцентных свойств твердых растворов на основе LaInO₃, легированного одновременно ионами Pr^{3+} , Nd³⁺, а также Cr^{3+} .

В настоящей работе твердофазным методом проведен синтез твердых растворов на основе индата лантана со структурой перовскита $La_{0.997}Pr_{0.003}InO_3$, $La_{0.98}Nd_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Nd_{0.02}InO_3$,

Рис. 1. Рентгеновские дифрактограммы индатов $La_{0,997}Pr_{0,003}InO_3$ (1), $La_{0,98}Nd_{0,02}InO_3$ (2), $LaIn_{0,99}Cr_{0,01}O_3$ (3), $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ (4), $La_{0,977}Pr_{0,003}Nd_{0,02}InO_9$ (5)

 $LaIn_{0,99}Cr_{0,01}O_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$, получены и проанализированы их спектры возбуждения люминесценции и спектры фотолюминесценции в области длин волн 250–1150 нм.

Методика эксперимента. Синтез керамических образцов твердых растворов на основе индата лантана LaInO₃ со структурой перовскита La_{0.997}Pr_{0.003}InO₃, La_{0.98}Nd_{0.02}InO₃, LaIn_{0.99}Cr_{0.01}O₃, $La_{0.977}Pr_{0.003}Nd_{0.02}InO_3, La_{0.977}Pr_{0.003}Nd_{0.02}In_{0.99}Cr_{0.01}O_3$ проведен твердофазным методом из смесей оксидов лантана (La₂O₃), празеодима (Pr_6O_{11}), неодима (Nd₂O₃), индия (In₂O₃), хрома (Cr₂O₃). Все реактивы имели квалификацию «х. ч.». Оксиды лантана и неодима были предварительно обожжены на воздухе при температуре 1273 К в течение часа. Исходные оксиды, взятые в заданном молярном соотношении, смешивали и мололи в планетарной мельнице Pulverizette фирмы Fritch с добавлением этанола в стаканчиках с шарами из диоксида циркония. Полученную шихту прессовали в таблетки диаметром 25 мм и высотой 5-7 мм и затем обжигали на воздухе при темпе-

ратуре 1523 К в течение 6 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением $5 \times 5 \text{ мм}^2$, которые обжигали при температуре 1523 К на воздухе в течение 6 ч. Рентгеновские дифрактограммы образцов индатов получали на дифрактометре Bruker D8 Advance (излучение CuK_a) при комнатной температуре. Параметры элементарной ячейки кристаллической решетки рассчитывали с помощью рентгеноструктурного табличного процессора RTP. Измерения спектров возбуждения люминесценции и спектров фотолюминесценции керамических образцов проводили при 300 К на автоматизированном спектрофлуориметре СДЛ-2, состоящем из светосильного монохроматора возбуждения МДР-12 и монохроматора регистрации МДР-23 в Институте физики им. Б. И. Степанова НАН Беларуси. В качестве источника возбуждения использовали ксеноновую лампу ДКсШ-120.

Результаты и их обсуждение. Анализ рентгеновских дифрактограмм полученных образцов La_{0,997}Pr_{0,003}InO₃, La_{0,98}Nd_{0,02}InO₃, LaIn_{0,99}Cr_{0,01}O₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, (рис. 1) показал, что они являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃ ($a < c / \sqrt{2} < b$) [7], параметры которой приведены в табл. 1. Из-за небольших количеств легирующих ионов Pr³⁺, Nd³⁺, Cr³⁺ параметры кристаллической решетки всех исследованных твердых растворов отличаются незначительно от соответствующих параметров кристаллической решетки LaInO₃ [8].

Т а блица 1. Параметры *a*, *b*, *c* и объем элементарной ячейки *V*, степень орторомбического искажения є для твердых растворов на основе индата лантана LaInO₃, легированного ионами Pr³⁺, Nd³⁺, Cr³⁺

Control							
Состав	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	V, Å ³	$\varepsilon = (b-a) / a$	$c/\sqrt{2}$, A	
La _{0,997} Pr _{0,003} InO ₃	5,741	5,939	8,237	280,8	0,0345	5,824	
La _{0,98} Nd _{0,02} InO ₃	5,736	5,944	8,229	280,6	0,0363	5,819	
LaIn _{0,99} Cr _{0,01} O ₃	5,725	5,937	8,225	279,5	0,0370	5,816	
La _{0,977} Pr _{0,003} Nd _{0,02} InO ₃	5,739	5,939	8,236	280,8	0,0348	5,824	
$La_{0,977} Pr_{0,003} Nd_{0,02} In_{0,99} Cr_{0,01} O_3$	5,726	5,936	8,226	279,6	0,0367	5,817	
LaInO ₃ [8]	5,712	5,933	8,220	278,5	0,0387	5,812	

Рис. 2. Спектры возбуждения твердых растворов $La_{0,997}Pr_{0,003}InO_3$ при $\lambda_{per} = 655$ нм (*a*); $La_{0,98}Nd_{0,02}InO_3$ при $\lambda_{per} = 1080$ нм (*б*); при $\lambda_{per} = 900$ нм $LaIn_{0,99}Cr_{0,01}O_3$ (*e*), $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ (*c*, *1*), $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ (*c*, *2*)

На рис. 2 *а*, *б* приведены спектры возбуждения твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Nd_{0,02}InO_3$, которые, согласно литературным [1, 9] и нашим данным, в ряду твердых растворов $La_{1-x}Pr_xInO_3$, $La_{1-x}Nd_xInO_3$ имеют наибольшую интенсивность полос возбуждения и полос фотолюминесценции. В интервале длин волн 220–600 нм на спектре возбуждения люминесценции ($\lambda_{per} = 655$ нм) твердого раствора $La_{0,997}Pr_{0,003}InO_3$ присутствуют две полосы возбуждения. Согласно [1], наиболее интенсивная полоса возбуждения с максимумом при длине волны $\lambda = 247$ нм обусловлена переходом 4 $f^2 \rightarrow 4 f 5d$ электронов ионов Pr^{3+} . В области длин волн 430–520 нм присутствует менее интенсивная полоса возбуждения с тремя близкорасположенными максимумами при длинах волн 448, 470, 488 нм (табл. 2). Для пар максимумов длин волн 448, и 470 нм и 470, 488 нм величины энергетического интервала полос этих пар равны 1041 и 785 см⁻¹ соответственно. На спектре возбуждения ($\lambda_{per} = 1080$ нм) с максимумом при длине волны 272 нм, а в интервале длин волн 300–850 нм присутствует несколько менее интенсивных полос возбуждения, значения максимумов длин волн которых приведены в табл. 2, отличающихся незначительно от данных, приведенных в работе [6].

λ _{per} = 655 нм		λ _{per} = 1080 нм		$\lambda_{\rm per} = 900 \ { m HM}$				
La _{0,997} P	r _{0,003} InO ₃	La _{0,98} No	d _{0,02} InO ₃	La _{0,977} Pr _{0,003} Nd _{0,02} InO ₃		La _{0,977} Pr _{0,003} Nd _{0,02} In _{0,99} Cr _{0,01} C		
λ, нм	v, см ⁻¹	λ, нм	v, см ⁻¹	λ, нм	v, см ⁻¹	λ, нм	v, см ⁻¹	
247	40486	_	_	_	-	_	_	
_	-	272	36765	271	36900	272	36765	
_	-	332	30120	330	30303	—	—	
_	-	359	27855	358	27933	359	27855	
448	22321	436	22936	435	22989	_	—	
470	21277	479	20877	476	21008	—	—	
488	20492	_	_	_	-	487	20534	
_	-	531	18832	527	18975	—	—	
_	-	591	16920	590	16949	591	16920	
_	-	691	14472	691	14472	_	_	
_	_	754	13263	754	13263	754	13263	
_	_	811	12330	812	12315	797	12547	

T аблица2. Максимумы длин волн полос возбуждения (λ), их обратных значений (ν) для твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$

На рис. 2, *в* приведен спектр возбуждения ($\lambda_{per} = 900$ нм) твердого раствора LaIn_{0,99}Cr_{0,01}O₃, в котором 1% ионов In³⁺ индата лантана LaInO₃ замещено ионами Cr³⁺. Спектр возбуждения твердого раствора LaIn_{0,99}Cr_{0,01}O₃ содержит в интервалах длин волн 240–360, 420–580 и 620–800 нм три интенсивные полосы возбуждения с максимумами длин волн при 283, 494 и 735 нм, две величины которых (283, 735 нм) отличаются незначительно от величин максимумов длин волн полос возбуждения твердого раствора La_{0,98}Nd_{0,02}InO₃ (272, 754 нм). Максимум полосы возбуждения твердого раствора LaIn_{0,99}Cr_{0,01}O₃ при $\lambda = 494$ нм отличается незначительно от максимума длины волны полосы спектра возбуждения твердого раствора La_{0.987}Pr_{0.003}InO₃ ($\lambda_{max} = 488$ нм).

длины волны полосы спектра возбуждения твердого раствора La_{0,997}Pr_{0,003}InO₃ ($\lambda_{max} = 488$ нм). На спектре возбуждения фотолюминесценции ($\lambda_{per} = 900$ нм) твердого раствора La_{0 977}Pr_{0 003}Nd_{0 02}InO₃ (рис. 2, *г*, кривая *1*), в редкоземельной подрешетке которого расположены ионы-активаторы люминесценции Pr³⁺, Nd³⁺, присутствуют полосы возбуждения ионов Nd³⁺ с максимумами длин волн, отличающихся незначительно от величин максимумов длин волн полос возбуждения твердого раствора La_{0 98}Nd_{0 02}InO₃. Следует также отметить, что полоса возбуждения ионов Pr^{3+} твердого раствора $La_{0.977}Pr_{0.003}Nd_{0.02}InO_3$ малой интенсивности с двумя максимумами (435, 476 нм) перекрывается с двумя полосами возбуждения ионов Nd³⁺ ($\lambda_{max} = 436$ и 479 нм). Вероятно, незначительная интенсивность полос возбуждения ионов Pr³⁺ вызвана их малым содержанием по сравнению с концентрацией ионов неодима (0,3 и 2% соответственно). По этой же причине на спектре возбуждения твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$ (рис. 2, *г*, кривая 2), в подрешетке ионов In^{3+} которого расположены ионы Cr^{3+} (1%), вероятно, присутствует полоса возбуждения ионов Pr^{3+} ($\lambda_{max} = 488$ нм), но она перекрывается с интенсивной и широкой полосой возбуждения ионов Cr^{3+} твердого раствора $LaIn_{0.99}Cr_{0.01}O_3$ ($\lambda_{max} = 494$ нм, рис. 2, *в*). При этом интенсивность полосы возбуждения ионов Nd^{3+} твердого раствора $La_{0.977}Pr_{0.003}Nd_{0.02}In_{0.99}Cr_{0.01}O_3$ с максимумом при 487 нм и дублета при 754, 797 нм (рис. 2, г, кривая 2) значительно больше, чем интенсивность соответствующих полос возбуждения твердого раствора La_{0 977}Pr_{0 003}Nd_{0 02}InO₃ (рис. 2, *г*, кривая *I*).

На рис. 3 приведены спектры фотолюминесценции при $\lambda_{B036} = 260$ нм твердых растворов $La_{0,997}Pr_{0,003}InO_3$ (*a*), $La_{0,98}Nd_{0,02}InO_3$ (*b*), $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ (*b*). На спектре фотолюминесценции твердого раствора $La_{0,997}Pr_{0,003}InO_3$ в интервале длин волн 400–750 нм (сине-красная область спектра видимого света) наблюдаются три интенсивные полосы фотолюминесценции, состоящие из нескольких максимумов длин волн и две полосы фотолюминесценции небольшой интенсивности с максимумами длин волн при 430 и 539 нм. Согласно [1, 10], интенсивные полосы фотолюминесценции твердого раствора $La_{0,997}Pr_{0,003}InO_3$ с максимумами длин волн при 496, 655 и 741 нм ($\lambda_{B036} = 260$ нм) обусловлены *f*-*f* переходами электронов ионов $Pr^{3+3}P_0 \rightarrow {}^{3}H_4$, ${}^{3}P_0 \rightarrow {}^{3}F_2$ и ${}^{3}P_0 \rightarrow {}^{3}F_4$ соответственно. На спектрах фотолюминесценции твердого раствора $La_{0,98}Nd_{0,02}InO_3$

Рис. 3. Спектры фотолюминесценции при $\lambda_{B036} = 260$ нм твердых растворов $La_{0,997}Pr_{0,003}InO_3(a)$, $La_{0,98}Nd_{0,02}InO_3(b)$, $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3(a)$

($\lambda_{возб} = 260$ нм) в интервале длин волн 400–1150 нм (рис. 3, б) наблюдаются две интенсивные полосы фотолюминесценции с двумя максимумами длин волн каждой полосы при 887, 903 нм и ≈1070, 1080 нм (ИК-область спектра), обусловленные, согласно [11–13], *f*–*f* переходами электронов ионов Nd^{3+ 4}F_{3/2} → ⁴I_{9/2} и ⁴F_{3/2} → ⁴I_{11/2} соответственно. На спектре фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (рис. 3, *в*) в интер-

На спектре фотолюминесценции твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ (рис. 3, *в*) в интервале длин волн 450–750 нм присутствуют три полосы фотолюминесценции очень небольшой интенсивности ионов Pr^{3+} (рис. 3, *в*, вставка), а в интервале длин волн 760–1120 нм присутствуют две интенсивные полосы фотолюминесценции ионов Nd^{3+} с максимумами длин волн, отличающихся незначительно от величин максимумов длин волн полос фотолюминесценции ионов Nd^{3+} твердого раствора $La_{0,98}Nd_{0,02}InO_3$. Вероятно, такая незначительная интенсивность полос фотолюминесценции ионов Pr^{3+} по сравнению с интенсивностью полос фотолюминесценции ионов Nd^{3+} в твердом растворе $La_{0,977}Pr_{0,003}Nd_{0,02}InO_3$ обусловлена их малым содержанием (0,3%) по сравнению с содержанием ионов Nd^{3+} (2%) в этом твердом растворе.

Спектр фотолюминесценции твердого раствора LaIn_{0,99}Cr_{0,01}O₃ (рис. 4, кривая *3*) в интервале длин волн 500–1100 нм содержит лишь одну размытую от 700 до 1100 нм интенсивную полосу фотолюминесценции ионов Cr³⁺. На спектре фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O₃ (рис. 4, кривая *2*) в интервале длин волн 400–700 нм присутствуют лишь полосы небольшой интенсивности ионов Pr³⁺, а в интервале длин волн 700–1100 нм – две интенсивные полосы фотолюминесценции ионов Nd³⁺ и полоса фотолюминесценции ионов Cr³⁺ с размытым максимумом из-за ее перекрытия с интенсивными полосами фотолюминесценции ионов Nd³⁺ в этом интервале длин волн. Анализ полученных спектров фотолюминесценции при $\lambda_{возб} = 260$ нм, 445 нм твердых растворов La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (рис. 4, кривые *1*), La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O₃ (рис. 4, кривые *2*) показывает, что введение в подрешетку ионов In³⁺ твердого раствора La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ 1% ионов Cr³⁺ приводит к уменьшению интенсивности полос фотолюминесценции лолос фотолюминесценции ионов La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (рис. 4, кривые *1*), La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (рис. 4, кривые *1*).

несценции ионов Pr³⁺ как при $\lambda_{B036} = 260$ нм, так и при $\lambda_{B036} = 445$ нм (рис. 4 *a*, *б*, вставки). Сравнение спектров фотолюминесценции при $\lambda_{B036} = 260$ нм твердых растворов La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (рис. 4, *a*) показывает, что введение в твердый раствор La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ 1% ионов Cr³⁺ также приводит к уменьшению интенсивности полос фотолюминесценции ионов Nd³⁺. Однако сравнение спектров фотолюминесценции при $\lambda_{B036} = 445$ нм этих двух твердых растворов (рис. 4, *б*) показывает, что в данном случае введение в твердый раствор La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ 1% ионов хрома Cr³⁺ приводит к значительному увеличению интенсивности полос фотолюминесценции ионов Nd³⁺. Однако сравнение спектров фотолюминесценции при $\lambda_{B036} = 445$ нм этих двух твердых растворов (рис. 4, *б*) показывает, что в данном случае введение в твердый раствор La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ 1% ионов хрома Cr³⁺ приводит к значительному увеличению интенсивности полос фотолюминесценции ионов Nd³⁺. Это показывает, что в данном случае введение в твердый раствор La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ 1% ионов хрома Cr³⁺ приводит к значительному увеличению интенсивности полос фотолюминесценции ионов Nd³⁺ с максимумами длин волн при 886, 902 и 1079 нм (рис. 4, *б*, табл. 3). Это показывает, что ионы Cr³⁺, расположенные в подрешетке

Рис. 4. Спектры фотолюминесценции твердых растворов La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ (*I*), La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O₃ (*2*), LaIn_{0,99}Cr_{0,01}O₃ (*3*) при λ_{B036} = 260 нм (*a*) и 445 нм (*б*)

ионов In^{3+} орторомбической структуры перовскита твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$, играют роль сенсибилизатора люминесценции ионов Nd^{3+} при их возбуждении видимым светом с $\lambda_{B036} = 445$ нм, что согласуется с данными, полученными в работе [10].

Следовательно, поглощенная ионами Cr^{3+} твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$ энергия при их возбуждении видимым светом ($\lambda_{воз6} = 445$ нм) передается неактивированным ионам-активаторам Nd³⁺. Такая передача энергии возможна, так как полоса фотолюминесценции ионов Cr^{3+} с максимумом длин волн при 825 нм (рис. 4, *б*, кривая 3) перекрывается с полосами возбуждения (поглощения) ионов Nd³⁺ твердого раствора $La_{0,977}Pr_{0,003}Nd_{0,02}In_{0,99}Cr_{0,01}O_3$ с максимумами длин волн при 754, 797 нм (табл. 2, рис. 2, *г*, кривая 2).

La _{0,997} Pr _{0,003} InO ₃		La _{0,98} Nd _{0,02} InO ₃		La _{0,977} Pr _{0,003} Nd _{0,02} InO ₃		${\rm La}_{0,977}{\rm Pr}_{0,003}{\rm Nd}_{0,02}{\rm In}_{0,99}{\rm Cr}_{0,01}{\rm O}_{3}$	
λ _{люм} , нм	v _{люм} , см ⁻¹	$\lambda_{_{\rm ЛЮМ}},$ нм	v _{люм} , см ⁻¹	λ _{люм} , нм	ν _{люм} , см ⁻¹	$\lambda_{_{\rm ЛЮМ}}$, нм	v _{люм} , см ⁻¹
489	20450	_	_	488	20492	488	20492
494	20243	_	_	495	20202	494	20243
501	19960	_	_	502	19920	502	19920
530	18868	_	_	530	18868	_	_
538	18587	_	_	538	18587	_	_
544	18382	_	_	545	18349	_	_
615	16260	_	_	615	16260	_	_
622	16077	-	—	621	16103	-	-
635	15748	-	—	634	15773	-	-
654	15291	_	_	653	15314	653	15314
694	14409	_	_	693	14430	_	_
715	13986	-	—	717	13947	-	-
740	13514	-	—	740	13514	-	-
-	_	_	—	748	13369	-	-
-	_	_	—	—	_	≈840	11905
-	_	887	11274	886	11287	886	11287
_	_	903	11074	902	11086	902	11086
		≈1070	9345	≈1070	9345	_	_
-	_	1081	9251	1080	9259	1079	9268

Заключение. Твердофазным методом проведен синтез однофазных образцов твердых растворов La_{0,997}Pr_{0,003}InO₃, La_{0,98}Nd_{0,02}InO₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, La_{0,977}Pr_{0,003}Nd_{0,02}InO₃, La_{0,997}Pr_{0,003}Nd_{0,02}InO₃, La_{0,997}Pr_{0,003}Nd_{0,02}InO₃, Laln_{0,99}Cr_{0,01}O₃ на основе индата лантана LaInO₃ и изучены их спектры возбуждения и спектры фотолюминесценции при комнатной температуре. Установлено, что на спектрах фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ в интервале длин волн 450–750 нм присутствуют три полосы фотолюминесценции очень небольшой интенсивности ионов Pr³⁺, а в интервале длин волн 760–1120 нм присутствуют две интенсивные полосы фотолюминесценции ионов Nd³⁺. Введение в подрешетку ионов In³⁺ твердого раствора La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ InO₃ Nd_{0,02}InO₃ 1% ионов Cr³⁺ приводит к уменьшению интенсивности полос фотолюминесценции ионов Nd³⁺. Ведения $\lambda_{воз6} = 260$ и 445 нм, а интенсивность полос фотолюминесценции ионов Nd³⁺ на спектре фотолюминесценции при $\lambda_{воз6} = 445$ нм сильно увеличивается и, следовательно, ионы Cr³⁺ в твердом растворе La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ являются сенсибилизатором фотолюминесценции ионов Nd³⁺ на спектре фотолюминесценции при $\lambda_{воз6} = 445$ нм сильно увеличивается и, следовательно, ионы Cr³⁺ в твердом растворе La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ являются сенсибилизатором фотолюминесценции ионов Nd³⁺ на спектре мотолюминесценции при $\lambda_{воз6} = 445$ нм сильно увеличивается и следовательно, ионы Cr³⁺ в твердом растворе La_{0,977}Pr_{0,003}Nd_{0,02}InO₃ являются сенсибилизатором фотолюминесценции ионов Nd³⁺ на спектре мотолюминесценции изучением видимой области спектра.

Список использованной литературы

1. *Liu*, *X*. Synthesis and luminescent properties of $LaInO_3$: RE^{3+} (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays / X. Liu, J. Lin // Solid State Sci. – 2009. – Vol. 11. – P. 2030–2036.

2. Laksminarasimhan, N. Luminescent host lattices, LaInO₃ and LaGaO₃-A reinvestigation of luminescence of d¹⁰ metal ions / N. Laksminarasimhan, U. V. Varadaraju // Mater. Res. Bull. – 2006. – Vol. 41. – P. 724–731.

3. Luminescent properties of a new red-emitting phosphor based on LaInO₃ for LED / An Tang [et al.]. // Optoelec. Adv. Mater. - 2011. - Vol. 5, N 10. - P. 1031-1034.

4. Lee, G.-H. Solid solution red phosphors for white LED / G.-H. Lee, S. Kang // J. Lumin. - 2011. - Vol. 131. - P. 2582-2588.

5. Магнитная восприимчивость и эффективный магнитный момент ионов неодима индата Nd_{1-x}La_xInO₃ / И. Н. Кандидатова [и др.] // Труды БГТУ. № 3. Химия и технология неорган. в-в. – 2011. – С. 71–74.

6. *Кандидатова, И. Н.* Спектры люминесценции твердых растворов La_{1-x}Nd_xInO₃ (0,0 ≤ x ≤ 0,3) со структурой перовскита / И. Н. Кандидатова // Современные проблемы химии: сб. тез. докл. 14-й Междунар. конф. студентов и аспирантов; Киев, 15–17 мая 2013 г. / Киевский ун-т. – Киев, 2013. – С. 149.

7. *Крупичка, С.* Физика ферритов и родственных им магнитных окислов: в 2-х т. / С. Крупичка. – М.: Мир, 1976. – Т. 1. – 353 с.

8. Физико-химические свойства индатов неодима, лантана / Г. С. Петров [и др.] // Труды БГТУ. № 3. Химия и технология неорган. в-в. – 2010. – С. 103–107.

9. Магнитные и фотолюминесцентные свойства твердых растворов со структурой перовскита La_{1-x}Pr_xInO₃ (0,001 ≤ x ≤ 0,003) и La_{1-x}Nd_xInO₃ (0,007 ≤ x ≤ 0,05) / Л. А. Башкиров [и др.] // Сб. материалов. 2-го Белорус.-Латв. форума: Наука, инновации, инвестиции; Минск, 11–12 декабря 2014 г. – Минск: БНТУ, 2014. – С. 85–87.

10. Кандидатова, И. Н. Физико-химические свойства твердых растворов на основе галлатов, индатов редкоземельных элементов со структурой перовскита: автореф. дис. ... канд. хим. наук / И. Н. Кандидатова; БГУ. – Минск, 2014. – 24 с.

11. *Писаренко, В. Ф.* Скандобораты редких земель – новые лазерные материалы / В. Ф. Писаренко // Соросов. образоват. журн. – 1996. – № 11. – С. 111–116.

12. *Свиридов, Д. Т.* Оптические спектры ионов переходных металлов в кристаллах / Д. Т. Свиридов, Р. К. Свиридова, Ю. Ф. Смирнов. – М.: Наука, 1976. – 266 с.

13. *Свиридова, Р. К.* Спектры кристаллов ScYO₃, содержащих ионы Nd³⁺ / Р. К. Свиридова, П. А. Арсеньев // Журн. прикл. спектроскопии. – 1972. – Т. 17. – С. 888–890.

Поступила в редакцию 08.09.2015