© Юхно Е. К. *, Башкиров Л. А. *, Першукевич П. П. **, Слонская С. В. ***, Миронова-Улмане Н. А.****, Шараковский А. г.****

СПЕКТРЫ ВОЗБУЖДЕНИЯ И ФОТОЛЮМИНЕСЦЕНЦИИ ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ ИНДАТА ЛАНТАНА Lain0³ СО СТРУКТУРОЙ ПЕРОВСКИТА, ЛЕГИРОВАННОГО ИОНАМИ Nd³⁺, Cr³⁺

* Белорусский государственный технологический университет, Беларусь, 220006, Минск, ул. Свердлова, 13 a, e-mail: <u>bashkirov@belstu.by</u>

 Институт физики им. Б. И. Степанова Национальной академии наук Беларуси, Беларусь, 220072, Минск, пр. Независимости, 68
*** Белорусский государственный аграрный технический университет, Беларусь, 220023, Минск, пр. Независимости, 99
**** Институт физики твердого тела Латвийского университета, Латвия, LV-1063, Рига, ул. Кенгарага, 8

Твердофазным методом получены однофазные твердые растворы La, _rШ×1п03 (x= 0.007, 0.02, 0.05), Laln⁰99Cr⁰01O3, La⁰95Nd⁰05In⁰995Cr⁰005O3 и при комнатной температуре исследованы их спектры возбуждения и фотолюминесценции. Установлено, что интенсивность полос возбуждения и фотолюминесценции исследованных твердых растворов La, _ ^NdJnC^ зависит от степени замещения ионов La³⁺ ионами Nd³⁺. Наибольшую интенсивность полос фотолюминесценции в ИК области длин волн 850—950, 1040—1100, 1350—1370 нм имеет твердый растворе C 0.02 < x < 0.05. Установлено, что замешение 0.5 % ионов ln³⁺ в твердом растворе La⁰95Nd⁰ (7ПО3 ионами Cr³⁺ приводит к значительному увеличению интенсивности всех полос фотолюминесценции при возбуждении светом с длиной волны А.^{вооб} = 490 нм и уменьшению интенсивности всех полос фотолюминесценции при возбуждении светом с длинами волн А.^{вооб} = 358, 532, 585 нм.

Ключевые слова: твердые растворы, индат лантана, рентгенофазовый анализ, спектры возбуждения люминесценции, спектры фотолюминесценции.

Введение. В последнее десятилетие значительно повысился интерес к исследованиям спектров возбуждения люминесценции, спектров фотолюминесценции твердых растворов на основе Laln0³ с кристаллической структурой орторомбически искаженного перовскита, легированного ионами редкоземельных элементов Pr^{3+} , Sm^{3+} , Eu^{3+} , Tb^{3+} , излучающих свет в видимой области [1-5]. В меньшей степени исследованы фотолюминесцентные свойства твердых растворов на основе Laln0³, легированных ионами Nd³⁺, люминесцирующих в ИК области спектра (1.06 мкм) [6, 7]. Активные элементы первых твердотельных лазеров были изготовлены из a-A120³, легированного ионами Cr^{3+} , а также из алюминатов, галлатов иттрия со структурами граната и перовскита, легированных ионами неодима Nd³⁺. В связи с этим исследованию оптических спектров ионов Nd³⁺, Cr^{3+} в кристаллах и стеклах различных соединений посвящено большое количество работ [8–10]. В работе [9] приведены достоинства и недостатки таких активных элементов твердотельных лазеров, описаны механизмы

Поступило 26 июня 2015 г.

концентрационного тушения, в том числе процесс кросс-релаксации, подробно обсуждены схема уровней энергии ионов Nd³⁺ и переходы между ними в кристаллической матрице иттрий-алюминиевого граната Y³Al⁵Ol². В работе [7] исследованы спектры возбуждения люминесценции и спектры фотолюминесценции твердого раствора Lao9Nd^{0л}1п0³, в котором 10 % ионов лантана La³⁺ замещены ионами Nd³⁺, что больше критической величины (~ 5 %), выше которой наблюдается концентрационное тушение люминесценции ионов Nd³⁺. Фотолюминесценция пар ионов Cr³⁺ – Eu³⁺ наблюдалась в кристаллах EuAЮ³ и Eu³Ga⁵Ol², легированных ионами Cr³⁺ [11]. Исследования фотолюминесценции пар ионов Cr³⁺ – Tb³⁺ в TbAЮ³, легированном ионами Cr³⁺, приведены в [12]. В работе [7] отмечается, что введение в твердый раствор Lao⁹Nd⁰]ln0³ 0.5 % ионов Cr³⁺ приводит к увеличению фотолюминесценции ионов Nd³⁺ при их возбуждении видимым светом. Однако систематическое исследование влияния ионов Cr³⁺ на фотолюминесценцию ионов Nd³⁺, введенных в кристаллическую решетку Laln0³, отсутствует.

В настоящей работе впервые твердофазным методом проведен синтез твердых растворов на основе индата лантана со структурой перовскита Lai ~xNd×In0³ с 0.007 < x < 0.05, а также LaIrio.99Cr⁰⁰i0³, Lao ⁹⁵Ndo ⁰⁵1п⁰99⁵Cr⁰⁰o⁵O₃. Получены и про-анализированы их спектры возбуждения и спектры фотолюминесценции в области длин волн 250—1450 нм.

Методика эксперимента. Синтез керамических образцов твердых растворов La, ^TNdvIn03 (x= 0.007, 0.02, 0.05) и LaIn0.99Cro.oi03, <u>Lao.95Ndo.05Ino.995Cro.0050</u>;) проведен твердофазным методом из оксидов: La²⁰³, Nd²⁰³, ln²⁰³, Cr²⁰³. Все реактивы имели квалификацию «хч». La²⁰³ и Nd²⁰³ были предварительно обожжены на воздухе при температуре 1273 К в течение 1 ч. Исходные оксиды, взятые в заданном молярном соотношении, смешивали и измельчали в планетарной мельнице Pulverizette фирмы Fritch с добавлением этанола в стаканчиках с шарами из диоксида циркония. Полученную шихту прессовали под давлением 50-75 МПа в таблетки и обжигали на воздухе при температуре 1523 К в течение 6 ч на подложках из оксида алюминия. Для исключения взаимодействия таблеток с материалом подложки образцы отделяли от подложки тонким слоем шихты того же состава, что и сами таблетки (таблетки между собой не контактировали). В течение первого обжига твердофазные реакции, приводящие к образованию твердого раствора, по-видимому, проходили не полностью. Для их завершения и достижения однородного распределения легирующих ионов Nd³⁺, Cr³⁺ по объему образовавшегося твердого раствора таблетки после первого обжига дробили, снова измельчали, прессовали в бруски длиной 30 мм и сечением 5 х 5 мм, которые обжигали при температуре 1523 К на воздухе в течение 6 ч. Полученные керамические образцы были использованы для исследования теплового расширения синтезированных образцов. От этих брусков откалывали кусочки длиной ~ 5—7 мм, которые использовали для исследования их фотолюминесцентных и магнитных свойств. Рентгеновские дифрактограммы образцов получены на дифрактометре Bruker D8 Advance (Си£а-излучение) при комнатной температуре. Параметры элементарной ячейки кристаллической решетки рассчитаны с помощью рентгеноструктурного табличного процессора RTP. Измерения спектров возбуждения люминесценции и спектров фотолюминесценции проводили при 300 К на автоматизированном спектрофлуориметре СДЛ-2, состоящем из светосильного монохроматора возбуждения МДР-12 и монохроматора регистрации МДР-23 в Институте физики ПАН Беларуси. В качестве источника возбуждения использовали ксеноновую лампу ДКсШ-120.

Результаты и их обсуждение. Анализ рентгеновских дифрактограмм показал, что полученные образцы индатов Lai -xNd×In0³ (x = 0.00". 0.02. 0.05), Laln⁰ 9⁹Cr⁰oi0³ и Lao.95Ndo.o5lⁿo.995Cro.oo503 являются однофазными. Параметры *а. b.* с, определенные с точностью ±0.001 А, соответствуют элементарной ячейке орторомбически иска-

Таблица 1

Состав						
	a, A	Ь,к	с, А	<i>v</i> , A ³	£, KΓ ²	C/1/2, A
Lao 993Nd ^{0 007} 1nO ³	5.732	5.943	8.226	280.2	3.68	5.817
^{La} 0.98 Nd 0.02 ^{In} O3	5.736	5.944	8.229	280.6	3.63	5.819
^{La} 0.95 Nd 0.05 ^{InO} 3	5.724	5.937	8.220	279.3	3.72	5.812
LaIn ⁰⁹⁹ Cr ⁰⁰ iO ³	5.725	5.937	8.225	279.5	3.70	5.816
Lao 9 5 N d 0 05In0 995Cr0 005O3	5.726	5.941	8.225	279.8	3.75	5.816
Laln0 ³ [14]	5.712	5.933	8.220	278.5	3.87	5.812
Ndln0 ³ [14]	5.631	5.897	8.133	270.1	4.72	5.751

Параметры a, A, c и объем Vэлементарной ячейки, степень орторомбического искажения е для твердых растворов на основе Laln03, легированного ионами Nd³⁺, Cr³⁺

женной структуры перовскита типа GdFe0³ (a<cl42<b) [13] (табл. 1). Однофазность полученных образцов и значения параметров *a*, *b*, *c* согласуются с данными работы [14], в которой показано, что в системе Laln0³—Ndln0³ образуется непрерывный ряд твердых растворов Lai -xNd^JIn0³ с орторомбически искаженной структурой перовскита, степень искажения которой (e = (b - a)Ia) увеличивается с увеличением содержания ионов Nd³⁺ в твердом растворе постепенно от величины 3.87- 10⁻² для Laln0³ до 4.72 • I<H для Ndln0³.

На рис. 1, *а* видно, что интенсивность всех полос возбуждения люминесценции при APT = 1080 нм для исследованных твердых растворов La] $_xNd^xIn0^3$ (x = 0.007, 0.02, 0.05) зависит от содержания в них ионов Nd³⁺. Наибольшую интенсивность с максимумом при X — 271 нм имеет твердый раствор при x = 0.05 (рис. 1, *a*, кривая 3). Наибольшая интенсивность полос наблюдается для твердого раствора с x = 0.02 при длинах волн 592, 753, 812 нм (рис. 1, *a*, кривая 2). Интенсивность полос возбуждения с максимумами при X - 332 и 359 нм для твердых растворов Laj _tNd^TIn0³ cx = 0.02 и 0.05 практически одинакова, а интенсивность этих полос для твердого раствора с x = 0.02 к = 0.007 меньше, чем для твердых растворов с x = 0.02 и 0.05 (рис. 1, *a*).

Полосы возбуждения полученных спектров для твердых растворов La! $_xNd^xIn0^3$ (рис. 1, *a*) имеют небольшую ширину. Для твердого раствора с x = 0.05 ширина по-

Рис. 1. Спектры возбуждения люминесценции при A, per= 1080 нм (a) и спектры фотолюминесценции при Я. возб = 358 нм (б) твердых растворов La, JNdJn0³ с x= 0.007 (/), 0.02 (2), 0.05 (3).

523

Хрс,.= 1080 нм							$\mathbf{X}^{ ext{pcl.}} = 900 ext{ HM}$			
^{La} 0.98 Nd 0.02 ^{TnO} 3 ^{La} ().95 Nd 0.05 ^{InO} 3				LaQ ⁹⁵ N	d ^{0 05} 1π0 995C	10 00503	LaIn099Cr001 ₀₃			
X, HM	v, см ¹	X, HM	v, см ¹	ДХ, им	X, HM	v, cm '	АХ, ИМ	X, HM	v, CM '	АХ, им
272	36765	271	36900	29	272	36765	37	283	35336	52
332	30120	332	30120	47	_	_	_	_	-	_
359	27855	359	27855	23	360	27778	19	_	-	_
436	22936	437	22883	13	440	22727	18	_		_
479	20877	479	20877	24	486	20576	53	494	20243	79
531	18832	531	18832	29	527	18975	34	_	-	_
591	16920	591	16920	29	591	16920	26	_	-	_
691	14472	692	14451	26	705	14184	76	_	-	_
754	13263	753	13280	31	752	13298	40	735	13605	128
811	12330	811	12330	26	812	12315	26	_	-	-

Максимумы длин волн полос возбуждения (Я.), их обратных значений (v) для твердых растворов La, »NdvInOj c .v = 0.02, 0.05, Lau^sNdo.nsInoOTsCro.oosOs и <u>LaIno.99Cro.01O3</u>, значения ширины полос возбуждения на полувысоте (ДА.) для твердых растворов Lao^Ndo.osInOi, Lao.osNdo.osIno^{*}sCro.oosOj и <u>LaIno.99Cro.01O3</u>

лос возбуждения на полувысоте (ДА.) составляет 13-47 нм (табл. 2). Интенсивность полос фотолюминесценции спектров, полученных при длинах волн возбуждения (А,^{возб}), равных 358 нм (рис. 1, *b*), 532 нм (рис. 2, *a*) и 585 нм (рис. 2, б), отвечающих максимумам полос возбуждения (рис. 1, *a*), зависит от содержания ионов Nd³⁺ в индатах Lat _xNdvIn0³. При этом интенсивность всех полос фотолюминесценции твердых растворов La] _xNdxIn0³ с x = 0.02 и 0.05 значительно больше, чем для твердого раствора с x - 0.007, а интенсивности полос для растворов La! _iNdxIn0³ с x = 0.02 и 0.05 отличаются незначительно. На всех спектрах фотолюминесценции (A.^{возб} = 358, 532, 585 нм) присутствуют две интенсивные полосы в ИК области длин волн 850-950 нм, 1040-1100 нм и полоса небольшой интенсивности в области 1350-1370 нм. Согласно литературным данным [9, 10, 15], эти полосы обусловлены переходами /-электронов ионов неодима Nd³⁺ с возбужденного уровня ^A*Fm* на ниж-

Рис. 2. Спектры фотолюминесценции при А^{воб} = 532 нм (*a*) и при Х.^^ = 585 нм (*b*) твердых растворов La, _ vNd,.In0³ *cx* = 0.007 (/), 0.02 (2). 0.05 (3|.

Таблица З

Максимумы длин волн полос фотолюминесценции (Я..,¹⁰,.) и их обратные значения (Х^{ШМ}), штарковское расщепление термов кристаллическим полем структуры перовскита (Av) и *f-f*переходы, обусловливающие излучение, для твердых растворов на основе LalnO,, легированного ионами Nd³⁺, Cr³⁺

Состав	<i>КоъЪ</i> = ³⁵⁸ им			Чшзб • ^{532 нм}			^ _{возб} = ⁵⁸⁵ им			
Cociab		^•люм- см ,	Av, см ⁻ '	^-люм" ""	1 см 1 люи.	Av, см~'		^-люм. ^{см 1}	Av, см ⁻ '	//Переходы
	000	11240		000	11000					
Lao.98 Nd 0.02 ^{In} °3	889	11248	210	890	11236	198	889	11248	210	$\frac{3}{2} - \frac{3}{2}$
	906	11038		906	11038		906	11038		-,- ,-,-
	1070	9346	112	1070	9346	112	1070	9346	112	A 2 / 2
	1083	9234		1083	9234		1083	9234		··· 3/2 - %łO
	1351	7402	108	1349	7413	108	1349	7413	108	4/Fa. a 4/ . a . a
	1371	7294		1369	7305	100	1369	7305	100	3/2 - 13/2
La ^{0 95} Nd ⁰⁰⁵ [nO ³	890	11236	198	891	11223	185	888	11261	223	
	906	11038		906	11038		906	11038		**M - %/2
	1070	9346	112	1070	9346	112	1069	9355		
	1083	9234	112	1083	9234	112	1082	9242	113	^ 3 / 2 - % 1/2
	1352	7396	102	1349	7413		1349	7413	100	
	1371	7294	102	1370	7299	114	1369	7305	108	^{4/Γ} 3/2 "* ^{4/} 13/2
La ⁰ (, ⁵ Nd ⁰⁰⁵ In ⁰⁹⁹⁵ Cr ⁰⁰⁰⁵ O ³	887	11274	236	891	11223	185	889	11249	211	
	906	11038		906	11038		906	11038		^{Ар} ъа ~* %/2
	1071	9337	102	1070	9346		1069	9355		
	1083	9234	103	1082	9242	104	1083	9234	121	$\frac{4}{7}3/2 * \frac{41}{11/2}$
	1352	7396		1349	7413		1349	7413		
	1370	7299	97	1368	7309	104	1369	7305	108	$4^{3}/2 \sim 4'13/2$

Рис. 3. Спектры возбуждения люминесценции твердого раствора Ба1п⁰⁹⁹Сг⁰⁰|Оз при ^ре, = 900 нм (а) и твердого раствора Lao ⁹⁵Ndo ⁰⁵1п⁰ ⁹⁹⁵Сг⁰ ⁰⁰⁵Оз при Хрт = 1080 нм (б).

ние уровни ⁴/9/2, ⁴/ц/2, ⁴.i3/2- Наличие у каждой полосы фотолюминесценции двух максимумов, расположенных друг от друга не более чем на 20 нм, вероятно, обусловлено штарковским расщеплением мультиплетов ⁴/^{9/2}, ⁴/ц/**2**, ⁴*I*\m основного терма ⁴/ иона Nd³⁺ кристаллическим полем орторомбически искаженной структуры перовскита твердых растворов La, _,.Ш^т1пОз с x = 0.007, 0.02, 0.05. Значения штарковского расщепления мультиплетов терма ⁴/ (Av), рассчитанные по этим парам близкорасположенных максимумов полос, приведены в табл. 3. Их анализ показывает, что штарковское расщепление мультиплетов ⁴/₉/2, ⁴Ai/2> **3/2** невелико (не более 223 см~') и практически не зависит от концентрации ионов Nd³⁺ и длины волны возбуждающего излучения. Наибольшая величина расщепления наблюдается для мультиплета 4/9/2 $(Av = 185 - 223 \text{ cm}^{-1})$, а наименьшую величину Av $(102 - 114 \text{ cm}^{-1})$ демонстрирует мультиплет ⁴/i3/₂. Величина штарковского расщепления мультиплета ⁴/ц/2 отличается незначительно от величины Av мультиплета ⁴/п/2- На рис. 3, *а* приведен спектр возбуждения (^per = 900 нм) твердого раствора Lalrio 99Сг001Оз, в котором 1 % ионов $1n^{3+}$ замещен ионами Cr³⁺. На рис. 3, б приведен спектр возбуждения (крег = 1080 нм) твердого раствора La⁰95Nd⁰ 051n⁰ 995Cr⁰⁰⁰⁵O3, в котором 0.5% ионов 1п³⁺ замещено ионами Cr^{3+} . Спектр возбуждения твердого раствора Lalrio⁹⁹Cr⁰⁰¹O³ (рис. 3, *a*) содержит в интервалах длин волн 240-360, 420-580 и 620-800 нм три интенсивные полосы, ширина которых на их полувысоте равна 52, 79 и 128 нм соответственно (табл. 2). Сравнение спектров возбуждения твердых растворов LaIn^{0 99}Cr⁰⁰|O³ (рис. 3, *a*) и Lao⁹⁵Ndo⁰⁵1пO³ (Р^{ис} - U *a*, кривая 3), Lao.⁹⁵Nd⁰o⁵In^{a99}5Cr⁰⁰⁰⁵O3 (рис. 3, *6*) показывает, что ширина полос возбуждения твердого раствора LaIn099Cr001O3 значительно больше, чем для твердых растворов La^{0 95}Nd^{0 05}InO³, Lao ⁹⁵Nd^{0 05}In^{0 995}Cr^{0 005}O³ (табл. 2). Кроме того, число полос спектров возбуждения для твердых растворов Lao.95Nd₀.**o5**^{iri}03> Lao.95Ndo.o5^{1П} о.995Сго.оо503, содержащих ионы Nd³⁺, больше, чем у спектра твердого раствора Laln $^{0.99}$ Cr $^{0.01}$ O³, в котором ионы неодима отсутствуют. В спектрах возбуждения твердого раствора Laln⁰99Cr⁰⁰|O³ в интервалах длин волн 420-580 и 620-800 нм наблюдается по одной широкой полосе (рис. 3, а). Для твердых растворов LaogsNdoosInOs (рис. 1, *а*, кривая 3), Lao[^]Ndoos'Ho.oosCro.oosCb (Р^{ис}- 3, δ) в интервалах длин волн 420-580 и 620-800 нм характерно несколько полос. При этом полосы твердого раствора La0 95Nd0o5ln0 995Cr00o503 (рис. 3, б) являются более размытыми, чем полосы Lao.gsNdo⁰51nO³ (рис. 1, а, кривая 3). в котором отсутствуют ионы Сг³⁺. Это связано с тем, что в интервале длин волн 420-550 нм полосы ионов

Рис. 4. Полоса фотолюминесценции твердого раствора ba1п⁰⁹⁹Сг⁰0|0³ при А^{возб} = 445 нм (/, *a*) и полоса возбуждения твердого раствора La^{0 95}Nd^{0 05}1пO3 при А. = 1080нм (2, *a*); спектры фотолюминесценции твердых растворов Lao ^Ndo ⁰⁵1пO³ (7) и Lao ⁹⁵Ndo ⁰⁵1пO ⁹⁹⁵Сг^{0 005}O³ (2) при А^{возб} = 490 нм (б).

 Nd^{3+} в твердом растворе La⁰**9**⁵Ndo⁰⁵InO³ (А.макс = 479, 531 нм) и ионов Cr³⁺ в твердом растворе Laln⁰ 99Cr⁰⁰¹O³ (Амакс = 494 нм) частично перекрываются, образуя широкую полосу с двумя максимумами при 486 и 527 нм (рис. 3, б, табл. 2) в спектрах возбуждения твердого раствора La095Nd0Q5ln0995Cr0005O3. Спектр фотолюминесценции твердого раствора LaIn⁰⁹9Cr⁰⁰¹O³ (рис. 4, *а*, кривая /) в интервале длин волн 700-1100 нм содержит лишь одну размытую полосу фотолюминесценции, с которой перекрывается полоса возбуждения ионов Nd³⁺ с двумя максимумами при А. = = 753 и 811 нм твердого раствора Lao ${}^{95}Nd^{005}1nO^3$ (рис. 4, *a*, кривая 2). Следовательно, для пары ионов Nd³⁺ и Cr³⁺, введенных в кристаллическую решетку индата лантана Laln0³ в различные катионные подрешетки, выполняется основное условие сенсибилизации ионами Cr³⁺ фотолюминесценции ионов Nd³⁺. Согласно этому условию, полоса фотолюминесценции сенсибилизатора должна перекрываться с полосой поглощения активатора. В связи с этим ионы Сг³⁺, введенные в определенном количестве в кристаллическую решетку твердого раствора Lao95Ndo05In03, могут выполнять роль сенсибилизатора фотолюминесценции ионов Nd^{3+} . На рис. 4, δ видно, что введение 0.5 % ионов Cr^{3+} в подрешетку ионов $1n^{3+}$ твердого раствора La0.95Ndo 051пОз приводит к значительному увеличению интенсивности всех полос фотолюминесценции (А.^{возб} = 490 нм) твердого раствора Lao[^]N do 051П0.995СГ0.005О3 (кривая 2) по сравнению с твердым раствором Lao⁹⁵Ndo osInC[^] (кривая 1). Это показывает, что поглощенная ионами Сг³⁺ энергия при возбуждении твердого раствора Lag 95N do 05lno 995Cr0 005O3 светом с длиной волны Авозб = 490 нм передается ионам Nd^{3+} , т. е. ионы Cr^{3+} являются сенсибилизатором фотолюминесценции ионов Nd^{3+} . При возбуждении твердого раствора Lao 95Ndo 051n0 995Cr0 о0503 светом с длинами волн меньше или больше величины максимального поглощения ионов Сг³⁺ (494 нм, рис. 3, а) количество поглощенной ионами Сг³⁺ энергии уменьшается, следовательно, снижается эффективность передачи энергии ионам Nd^{3+} . В связи с этим, как видно на рис. 5, возбуждение светом с длинами волн А. возб, равными 358 (а), 532 (б), 585 нм (в) (кривые 2), твердого раствора La⁰.gsNdg ⁰51n⁰.995С г⁰⁰⁰⁵О³ приводит к уменьшению интенсивности полос фотолюминесценции, расположенных в интервалах длин волн 1040-1100, 1350-1370 нм, по сравнению с интенсивностью полос твердого раствора La⁰.95NCI0 05lnO³ (кривые 7). При этом интенсивность полосы фотолю-

Рис. 5. Спектры фотолюминесценции твердых растворов La⁰ ^Ndo⁰51nO³ (1) и LaQ ⁹⁵Nd⁰⁰51n⁰W5Cr⁰⁰⁰⁵O³ (2) при *Xm*³⁶ = 358 (а), 532 (б) и 585 нм (в).

минесценции в интервале длин волн 850—950 нм также уменьшается, но в меньшей степени.

Заключение. На всех спектрах фотолюминесценции твердых растворов La! _TNdTln03 (x = 0.007, 0.02, 0.05) присутствуют полосы излучения в ИК области с длинами волн 850—950, 1040—1100, 1350—1370 нм. Наличие у каждой полосы фотолюминесценции ионов Nd³⁺ двух близко расположенных максимумов позволило рассчитать величину штарковского расщепления мультиплетов ${}^{4/9/2}$, ${}^{4}/{}_{\rm U}/{}^{2}$, ${}^{A}/{}_{\rm M}$ oc ~ новного терма ${}^{4}/$ кристаллическим полем орторомбически искаженной структуры перовскита. Наибольшая величина расщепления наблюдается для мультиплета ${}^{4/9/2}$ (Av = 185—223 см⁻¹), а наименьшую величину (Av =102—114 см⁻¹) имеет мультиплет ${}^{4/i3/2}$. Интенсивность соответствующих полос фотолюминесценции твердого раствора Lai - vNd×In03 с x = 0.007 значительно меньше, чем твердых растворов с x == 0.02, 0.05, интенсивность которых различается незначительно. Установлено, что замещение 0.5 % ионов In³⁺ в Lan 95NC10 05¹¹¹ O³ ионами Cr⁻⁻~ при возбуждении светом с длиной волны X^{ao} , 35 = 490 нм приводит к значительно.м> чве.шчению интенсивности всех полос фотолюминесценции, а при возбуждении светом с дшнами волн 358, 532, 585 нм интенсивности полос фотолюминесценции уменьшаются, при этом такое уменьшение тем больше, чем больше длина волны возбуждения отличается от максимума поглощения ионов Cr³⁺.

Список литературы

- 1. Liu X., Lin J. Synthesis and Luminescent Properties of Laln0³ : RE^{3+} (RE = Sm, Pr and Tb) Nanocrystallinc Phosphors for Field Emission Displays // Solid State Sci. 2009. V. 11. P. 2030–2036.
- Laksminarasimhan N., Varadaraju U. V. Luminescent Host Lattices, Laln0³ and LaGa0³ a Reinvestigation of Luminescence of d¹⁰ Metal Ions // Mater. Res. Bull. 2006. V. 41. P. 724–731.
- 3. *TangAn., Zhang D., Yang L., WangX.* Luminescent Properties of a New Red-Emitting Phosphor Based on Laln0³ for LED // Optoclcc. Adv. Mater. 2011. V. 5. N 10. P. 1031–1034.
- 4. Lee G.-H., KangS. Solid Solution Red Phosphors for White LED //J. Lumin. 2011. V. 131. P. 2582-2588.
- 5. Кандидатова И. П., Башкиров Л. А., Петров Г. С. Тепловое расширение, термический анализ твердых растворов индатов Smi ^аЛпОз // Физ. и хим. стекла. 2013. Т. 39. № 1. С. 145—150.
- 6. Кандидатова И. П., Башкиров Л. А., Петров Г. С. и др. Магнитная восприимчивость и эффективный магнитный момент ионов неодима индатов Nd] _ Л^аЛпO3 // Труды БГТУ. Химия и технология неорган, веществ. 2011. № 3. С. 71–74.
- Кандидатова И. Н. Спектры люминесценции твердых растворов Lai xNd^xIn0³ (0.0 ≤ x ≤ 0.3) со структурой перовскита // Современные проблемы химии: Сборник тезисов докладов 14^й Международной конференции студентов и аспирантов. Киев, 15—17 мая 2013 г. Киев: Киевский университет, 2013. С. 149.
- Mohan S., Thind K. S., Singh D., Gerward L. Optical Properties of Alkali- and Alkaline-Earth Lead Borate Glasses Doped with Nd³⁺ Ions // Физ. и хим. стекла. 2008. Т. 34. № 3. С. 349-359.
- 9. *Писаренко В.* Ф. Скандобораты редких земель новые лазерные материалы // Соросовский образоват. журнал. 1996. № 11. С. 111–116.
- 10. Свиридов Д. Т., Свиридова Р. К, Смирнов Ю. Ф. Оптические спектры ионов переходных металлов в кристаллах. М.: Наука, 1976. 266 с.
- 11. Van der Ziel J. P., Van Uitert L. G. Europium-Terminated Chromium Fluorescence in EuA10³ : Cr³⁺ // Phys. Rew. Lett. 1968. V. 21. N 18. P. 1334–1336.
- Van der Ziel J. P., Van Uiter L. G. Optical Emission of Cr³⁺ Tb³⁺ Pairs in Terbium Orthoaluminate // Solid State Comm. 1969. V. 7. P. 819–821.
- 13. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standart: CardN 00-047-0067.
- 14. Петров Г. С, Башкиров Л. А., Лубинский П. Н. и др. Физико-химические свойства индатов неодима, лантана//Труды БГТУ. Сер. III. Химия и технология неорган. веществ. 2010. Вып. хуIII. С. 103–107.
- Свиридова Р. К., Арсеньев П. А. Спектры кристаллов ScY0³, содержащих ионы Nd³⁺ // Журн. прикл. спектроскопии. 1972. Т. 17. С. 888-890.