Студ. Г. Вейсага

Научн. рук. доц., канд. хим. наук В.Г. Матыс (кафедра химии, технологии электрохимических производств и материалов электронной техники, БГТУ)

ПАССИВАЦИЯ ГАЛЬВАНИЧЕСКИ ОСАЖДЁННОГО ЦИНКА ИЗ РАСТВОРОВ НА ОСНОВЕ ВАНАДАТОВ АММОНИЯ И МОЛИБДАТОВ НАТРИЯ

В течение многих лет хроматирование использовалось для пассивации металлических поверхностей с целью повышения их коррозионной стойкости. Из-за токсичности соединений Cr (VI) в 2000 году был введён запрет их использования для обработки деталей, используемых в автомобильной промышленности. Поэтому, для защиты цинка сплавов на их основе были разработаны конверсионные покрытия на основе соединений Cr (III) [1].

Целью исследования является разработка растворов пассивации цинковых покрытий без соединений хрома.

Основная задача данной работы является изучение влияния добавок ионов переходных металлов в растворе пассивации на основе ванадатов аммония и молибдатов натрия и их защитной способности, и коррозионной стойкости в 3 % растворе NaCl.

В качестве объектов коррозионных исследований были выбраны пластины (электроды) из листовой углеродистой стали марки 08 кп размером 20×20 мм с нанесенным электрохимически цинковым покрытием.

Коррозионные испытания для цинкового покрытия, нанесенного электрохимическим способом, проводили соответственно в растворе пассивации с содержанием Fe^{2+} , Zn^{2+} , молибдата натрия. Со временем погружения 4 и 6 минут. Полученная пассивная плёнка была исследована на защитную способность методом Капли. Полученные результаты сведены в таблицу 1.4. Все растворы были приготовлены на основе базового раствора следующего состава:

- 1. NH₄VO₃ 3,57 г/л (0,03M); NaF 0,56 г/л; K₃[Fe(CN)₆] 2,6 г/л; Составы растворов представлены ниже.
- Растворы пассивации:
- 2. Базовый раствор с добавкой Zn (II) 0,01M;
- 2'. Базовый раствор с добавкой Zn (II) 0,001М;
- 3. Базовый раствор с добавкой Fe (II) 0,01М;
- 3'. Базовый раствор с добавкой Fe (II) 0,001М;
- 4. $Na_2Mo_4 0.3M$;

- 5. Базовый раствор с добавкой Na₂Mo₄ 0,3 M;
- 6. Базовый раствор с добавкой Na₂Mo₄ 0,4 M.

Для осаждения покрытия использовался аммиакатно-хлоридный электролит цинкования (работает при рН 5,0-5,5). Катодный и анодный выходы по току близки к 100%. Аноды цинковые марки ЦО. Пассивацию цинковых покрытий не проводили. Качество полученных образцов оценивалось визуально. Все покрытия наносили в один слой толщиной 9 мкм (для снятия поляризационных кривых), сушку проводили при комнатной температуре. Для нанесения цинковых покрытий использовали потенциостат ПИ-50-1.1 с использованием программатора ПР-8.

Коррозионную стойкость покрытия с последующей пассивацией исследовали электрохимическим методом путем снятия анодных и катодных поляризационных кривых в 3 % растворе NaCl. Снятие катодных и анодных поляризационных кривых на образцах с площадью поверхности 8 см² осуществляли с помощью потенциостата IPC-PRO MF, подключенного к персональному компьютеру с программным обеспечением «IPC2000».

Все графические зависимости строили и обрабатывали с помощью программного пакета Excel 2007. Потенциостатические поляризационные кривые снимали в стандартной трехэлектродной электрохимической ячейке ЯСЭ-2 платиновым вспомогательным электродом, хлорсеребряным электродом сравнения. После погружения образца в раствор выдерживали его в течение 5-7 минут для определения величины бестокового потенциала. После установления потенциала снимали катодную поляризационную кривую в потенциодинамическом режиме со скоростью развертки потенциала 1 мВ/с. При этом потенциал смещался на -300±50мВ от бестокового потенциала в катодную сторону. Далее образец находился в растворе до установления значения бестокового потенциала, после чего снимали анодную кривую со смещением на +100 мВ от бестокового потенциала в анодную сторону. Снятие было произведено в два непрерывных цикла. Пример получения потенциостатических поляризационных кривых в два непрерывных цикла показан на рисунке 1. На рисунке 2 показан пример выбора областей для последующей обработки.

Далее были графически построены катодные и анодные поляризационные кривые с целью определения тока коррозии и потенциала коррозии. С помощью линии тренда были получены уравнения, по которым и были определены ток и потенциал коррозии. Пример показан на рисунке 3.

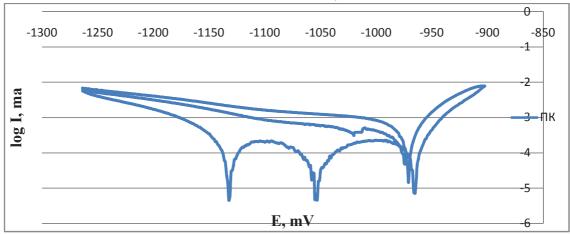


Рисунок 1. Потенциостатические поляризационные кривые в два непрерывных цикла в растворе 3% NaCl.

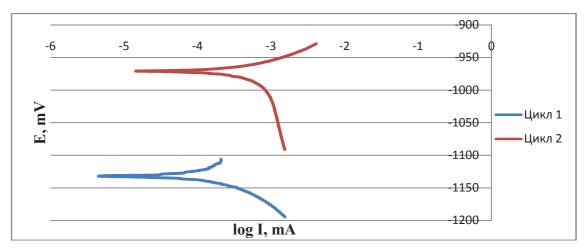


Рисунок 2. Поляризационные кривые первого и второго цикла в растворе 3% NaCl.

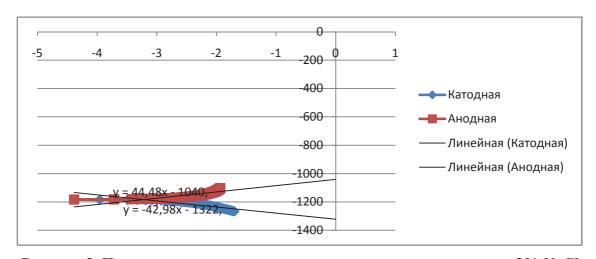


Рисунок 3. Поляризационные кривые с линиями тренда в растворе 3% NaCl

После обработки поляризационных кривых получили результаты о, потенциалах и токах коррозии. Полученные данные сводим в таблицу 1.2 и 1.3.

Таблица 1.2- Потенциалы коррозии, мВ

Р-ры	№ 1	№ 2	№2'	№ 3	№3'	№ 4	№5	№6
		0,01	0,001	0,01	0,001		0,3M	0,4M
4 мин	-1126,5	-1165,0	-1168,8	-1039,8	-1173,4	-944,4	-1139,8	-1167
6 мин	-1099,1	-1175,1	-1188,9	-1134,6	-1175,1	-987,1	-1030,3	-983,4

Таблица 1.3- Токи коррозии, мА

Р-ры	№ 1	№2	№ 2'	№ 3	№3'	№4	№5	№6
			10^{-3}		10 ⁻⁴	10 ⁻⁴	10 ⁻⁴	10 ⁻⁴
Мин		0,01	0,001	0,01	0,001		0,3M	0,4M
4	$3,06\cdot10^{-5}$	7,9.10-4	1,05	$6,7\cdot10^{-5}$	8,85	2,84	7,02	9,33
6	$1,13\cdot10^{-3}$	$1,1\cdot10^{-3}$	1,13	2,9·10 ⁻⁴	4,93	1,23	6,05	5,92

Таблица 1.4- Время выдержки

Растворы	№ 1	№2	№2'	№3	№3'	№4	№5	№6
Время		0,01	0,001	0,01	0,001		0,3M	0,4M
4 мин ср.	48,5сек	42,5сек	39сек	45,5сек	1м13с	1м10с	55сек	37,5c
6 мин ср.	1м 13с	42сек	52сек	55,5сек	43,5сек	57сек	41,5c	30сек

В результате исследований можно сделать следующее заключение.

Добавки ионов металлов и введение молибдата натрия в раствор пассивации на основе ванадата аммония приводят к незначительному сдвигу потенциала коррозии в катодную область, на 40 - 60 мВ.

Сдвиг потенциала коррозии в анодную область наблюдался лишь с добавкой Fe(II) с концентрацией 0.01M при 4 минутах, в чистом растворе $0.3~M~Na_2MoO_4$ при 4 и 6 минутах и в растворе ванадат аммония с добавкой $0.4~M~Na_2MoO_4$ при 6 минутах. Для токов коррозии были получены аналогичные результаты.

Защитный эффект пассивной плёнки увеличивается в базовом растворе с добавкой Fe(II) с концентрацией 0.01M и с добавкой 0.3M Na_2MoO_4 при 4 минутах. Время защитного эффекта в базовом растворе с добавкой 0.4 M Na_2MoO_4 при 6 минутах уменьшается в 2 раза, что говорит об обратном эффекте.

ЛИТЕРАТУРА

1.Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles, Official Journal of the European Communities, 21 October 2000.