Том 30

1985

Вып. 11

УДК 661.862.361.23:541.8

МАТВЕЕВИЧ В. А., НОВИКОВ Г. И., ШАФРАНСКИЙ В. Н., ДРОНДИНА Р. В., РОМАНОВ А. М., БОЛОТИН О. А.

СПЕКТРОСКОПИЧЕСКОЕ И ТЕРМОГРАВИМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ АЛЮМОГИДРОКСОФТОРИДНЫХ КОМПЛЕКСОВ

Методами ИК спектроскопии и термогравиметрии исследован процесс образования гидроксофторидных комплексов алюминия в процессе

очистки природных вод от фтора.

Показано, что при начальных соотношениях концентраций $c_{A^{13+}}$: c_F —1:0,5 и менее, которые обычно наблюдаются при сорбции ионов фтора на гидроксиде алюминия в процессе обесфторивания природных вод, происходит образование внешнесферных гидроксофторидных комплексов алюминия.

В литературе [1] известно, что в системе $AlCl_3 - NaF - H_2O$ образуются комплексные соединения алюминия с фтором от $[Al(H_2O)_5F]^{2+}$ до $[AlF_6]^{3-}$. Состав образующихся комплексных соединений зависит от концентрационных условий [2]. Тананаев И. В. и др. [3, 4] установили, что в разбавленных растворах образуются соединения типа $[Al(H_2O)_5F]^{2+}$ и $[Al(H_2O)_4F_2]^+$.

В присутствии ОН--ионов происходит реакция обмена

$$AlF_n^{3-n} + 3OH \rightarrow Al(OH)_3 + nF$$

При рН 4,0 и температуре $60-70^{\circ}$ С авторам [5] удалось получить гидроксофторид алюминия $Al(OH)F_2 \cdot 1,5H_2O$. На образование гидроксофторидных комплексов алюминия указано и в работах [6, 7].

Известно, что в комплексных соединениях алюминия (III) координационное число центрального атома равно 4 или 6, сообразно с этим количество лигандов не должно превышать число 6, а в случае мостиковых лигандов может быть и меньше 4 [8].

В процессе обесфторивания природных вод гидроксидом алюминия происходит образование алюмофторидных комплексов и их сорбция на гидроксиде алюминия. Мы ставили целью изучить природу комплексообразования в данной системе, что дает возможность оптимизировать процесс извлечения ионов фтора из природных вод.

При изменении соотношения исходных компонентов $AlCl_3 - NaF - NH_4OH - H_2O$ в осадок выпадает одно или смесь нескольких веществ, а в растворе в равновесии с твердой фазой находятся ионы согласно схеме:

$${\rm AlCI_3-NaF-NH_4OH-H_2O} \\ {\rm AlCI_3-NaF-NH_4OH-H_2O} \\ {\rm Al(OH)}_p ({\rm H_2O})_q {\rm F}_{6-(p+q)} \quad {\rm pаствор} \\ {\rm Al(OH)}_n {\rm F}_{3-n} {\cdot} m {\rm H_2O} \quad {\rm твердая} \ \ {\rm фаза} \\ {\rm Alcohom}_{10} {\rm F}_{10} {\cdot} m {\rm H_2O} = {\rm Trepp} {\rm Alcohom}_{10} {\rm Trepp} {\rm Alcohom}_{10} \\ {\rm Alcohom}_{10} {\rm F}_{10} {\cdot} m {\rm H_2O} = {\rm Trepp} {\rm Alcohom}_{10} {\rm Alcohom}_{10} \\ {\rm Alcohom}_{10} {\rm F}_{10} {\cdot} m {\rm H_2O} = {\rm Trepp} {\rm Alcohom}_{10} \\ {\rm Alcohom}_{10} {\rm F}_{10} {\cdot} m {\rm H_2O} = {\rm Trepp} {\rm Alcohom}_{10} \\ {\rm Alcohom}_{10} {\rm From}_{10} \\ {\rm Alcohom}_{10} {\rm From}_{10} \\ {\rm Alcohom}_{10} \\ {\rm From}_{10} \\ {\rm From}_$$

Нами изучена реакционная способность системы $AlCl_3 - NaF - NH_4OH - H_2O$ при постоянном pH (6,45), постоянной концентрации ионов Al^{3+} ($c_{Al^{3+}}$ =0,02 моль/л) и меняющейся концентрации ионов фтора (от 0,01 до 0,06 моль/л). При этих условиях выпадал аморфный осадок, который отделяли от фильтрата. В дальнейшем исследовали как твердую, так и жидкую фазу.

В твердом состоянии получено пять продуктов при различных концентрациях ионов фтора и одинаковых условиях (рН 6,45 и температуре

Продукт *	б	6	s	ð	e	бт	вт	гт	дт	ет
$c_{Al^{s+}}: c_{F}-=1: n$	0,5	1,0	1,5	2,0	3,0	0,5	1,0	1 ,5	2,0	3,0
$Al^{s+}: F^{-}=1: n$	0,48	0,81	0,96	1,10	2,18	0,49	0,92	1 ,10	1,15	2,25

^{*} n=0,5, 1,0, 1,5 и т. д.

25° С), они обозначены: 6, 6, c, ∂ и e (табл. 1). Исходный гидроксид алюминия — продукт a получен аналогично. При тех же соотношениях ионов $c_{\text{Al}^{3+}}: c_{\text{F}^-}$, рН 6,45 и нагревании растворов в течение 1 ч при температуре $60-70^{\circ}$ С получены продукты, обозначенные $a\tau$, $\delta\tau$, $e\tau$, $\partial\tau$ и $e\tau$ (табл. 1).

Концентрацию несвязанного фтора в маточном растворе определяли потенциометрическим методом с использованием лантан-фторидного электрода ЭГ/VI и хлорсеребряного электрода сравнения ЭВЛ-1МЗ. Количество связанных ионов фтора определяли по разности между исходной концентрацией и концентрацией несвязанных фторид-ионов (табл. 1).

Свойства всех полученых твердых продуктов изучены методами ИК спектроскопии и термогравиметрии. ИК спектры высушенных на воздухе продуктов получены на спектрофотометре UR-20 в интервале 400—3600 см⁻¹. Применяли методику растирания образцов в вазелиновом масле. ИК спектры продуктов представлены на рис. 1, 2, а в табл. 2 приведены значения некоторых колебательных частот, найденных в спектрах, и дана их наиболее вероятная интерпретация.

Термогравиметрические ($T\Gamma$) исследования были выполнены на установке для комплексного термического анализа системы Паулик — Паулик — Эрдей со скоростью нагрева 5 град/мин и навесках $2 \cdot 10^{-4}$ кг в атмосфере воздуха. Одновременно проводили измерение и запись изменения температуры (T), массы ($T\Gamma$) скорости изменения массы ($T\Gamma$) и тепловых эффектов превращений (T

Термогравиграммы продуктов представлены на рис. 3, а в табл. 3 приведены значения основных термических эффектов и соответствующая им убыль массы.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как видно из рис. 1, при повышении концентрации ионов F^- в составе продуктов происходят изменения, характеризующиеся соответствующими значениями частот валентных и деформационных колебаний Al-F, Al-O, Al-OH и др. Наблюдается повышение интенсивности полос поглощения $\nu(Al-F)$ и уменьшение интенсивности валентных и деформационных полос поглощения исходного гидроксида алюминия.

Для краткости изложения нами рассматривается только возможность образования мономерных комплексов алюминия, однако не исключена возможность, что в выделенной смеси могут существовать и полимерные гидроксосоединения алюминия со фтором. Тем не менее упрощенный способ выражения в данном случае оправдан, так как задачей настоящей работы являлось определение количества ионов фтора, приходящихся на один ион $A1^{3+}$.

В области 410-420 см⁻¹ в спектрах продуктов наблюдается полоса поглощения, относящаяся к связи Al-O. По интенсивности данной полосы можно судить о количестве образовавшихся однофтористых и двухфтористых гидроксокомплексов в исследуемых смесях. Изменение ширины и смещение интенсивности широкой полосы поглощения в области 450-670 см⁻⁷, которая соответствует v(Al-F), также подтверждает образование гидроксофторидных комплексов алюминия [9]. Постепенно широкая полоса поглощения октаэдров AlX_6 и тетраэдров AlX_4 комплексной структуры и v(Al-O) переходит в более узкую полосу поглощения с максимумом при 600 см⁻¹, которая по виду и положению в спектре, по

Основные частоты (см-1), найденные в ИК спектрах алюмогидроксофторидных комплексов

Продукт	ν(H ₂ O), ν(OH)	δ(ΟΗ), δ(ΗΟΗ)	δ(Al OH)	δ(Al — OH)	δ _{as} (Al-OH)	ν(Al — O), [Al(OH)4]-	ν(Al — O), ν(Al — F)	ν(Al — F)	v(Al — F), [AlF ₄]-
a	3600-3200 ш	1650 сл	1160 пл	1030 ср	980 ср	730 ср	665-530 ш		420 пл
б	3600-3200 ш	1650 сл	1155 пл	1030 ср	970 ср	729 cp	675-550°m		420 сл
в	3600-3200 ш	1650 ср	1155 пл	1030 ср	970 ср	729 cp	675-550 ш		420 сл
s	3600-3200 пт	1650 cp	1155 cp	1025 ср	970 ср	729 cp	675-550 m		420 сл
д	3600—3200 ш	1650 сл	1155 сл	1 025 cp	970 cp	729 cp	650-550 ш		420 o. c.
e	3600-3200 ш	1650 сл	1155 сл	1025 сл	970 сл	729 cp	620-580 с		42 0 cp
ж		1650 ил	1155 пл			-	655 с	545 ср	420 c
ar	3600-3200 ш	1650 ср	1 155 cp	1070 с	975 ср	722 cp	630 ср 500 ср		420 пл
6τ	3600—3200 ш	1645 сл	1155 сл	1 025 cp	970 ср	726 cp	650-550 ш		420 сл
вт	3600-3200 ш	1645 ср	1155 с	-	970 сл	712 с	675-550 m		420 сл
гr	3600—3200 ш	1645 ср	1150 с	_	970 сл	710 с	675—575 ш		420 сл
$\partial \tau$	3650—3400 ш	16 50 ср	1150 ср	_	970 пл	715 cp	675-575 ш		420 сл
$e\tau$	3600-3400 m	1650 сл	1160 ср	_	970 пл	710 cp	620-580 с	1	420 ср

Примечание: о. с. — очень сильная, с. — сильная, ср. — средняя, сл. — слабая, пл. — плечо, пг. — широкая.

Рис. 1. ИК спектры гидроксофторидных комплексов алюминия (a-e), полученных при 25° С. $\mathscr{K}-\mathrm{AlF}_3$. Звездочкой отмечены полосы поглощения вазелинового масла

Рис. 2. ИК спектры гидроксофторидных комплексов алюминия (ar-er), полученных при $60-70^{\circ}$ С. $\varkappa-\mathrm{AlF_3}$

Рис. 3. Дериватограммы гидроксофторидных комплексов алюминия (a-e), полученных при 25 и (ar-er) при 60-70°С (ДТА — дифференциальная термическая кривая; ТГ — термогравиметрическая кривая; ТГ — термогравиметрическая кривая)

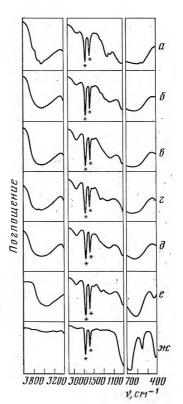


Рис. 1

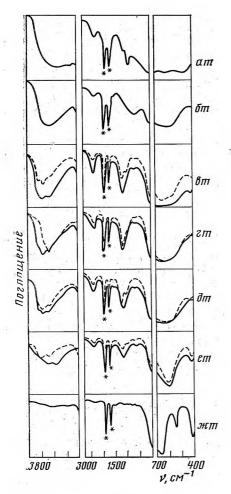


Рис. 2

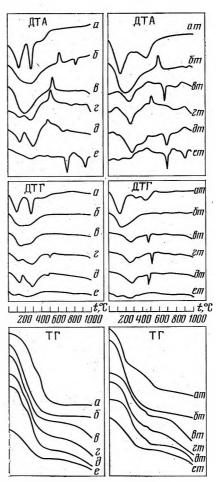


Рис. 3

Про- дукт	Номер эффекта *	t, °C	Убыль массы, %	Общая убыль массы, %	Про- дукт	Номер эффекта *	t, °C	Убыль массы, %	Общая убыль массы, %
a	II III	130 290 430	17.0 11,0 6,0	34,0	ат	I II III	150 300 460	19,0 3,5 8,5	31,0
6	III	190 280 440	23,0 9,5 4,5	39,0	бт	I II III	170 290 420	22,0 12,0 5,0	39,0
в	I III	190 270 420	19,0 12,0 4,5	35,5	вт	III II	140 270 400	4,0 11,0 5,0	20,0
S	III III	150 290 420	12,0 17,0 4,5	33,5	гт	III	160 260 300	6,0 14,0 6,0	26,0-
∂	I III III	140 310 380	11,5 18,0 4,0	33,5	ÔΤ	III	160 280 400	4,0 12,5 5,0	21,5
, e	I II III	130 270 360	6,0 8,0 1,5	15,5	ет	III III	130 270 370	4,0 8,0 2,5	14,5

^{*} Эндотермический эффект.

всей вероятности, относится к поглощению тетраэдров AlX_4 и v(Al-F). Полосы поглощения с максимумами при 970 и 1030 см⁻¹ относятся к поглощению $\delta(Al-OH)$ [10]. При повышении содержания фтора в реакционной смеси максимумы этих полос понижаются и в чистом AlF_3 они полностью отсутствуют. Следовательно, поглощение в области 900-1100 см⁻¹, полосы которой могут быть обусловлены координированными молекулами воды или гидроксильными группами [11], также свидетельствует об их замене в исходном гидроксиде алюминия на ионы фтора.

При сопоставлении максимумов этих полос (1030 и 970 см $^{-1}$) видно, что относительное уменьшение максимума полосы 1030-1025 см $^{-1}$ происходит постепенно при переходе от чистого $Al(OH)_3$ к продукту e, что связано, по-видимому, с замещением координированной воды ионами фтора. По мере увеличения содержания фтора (продукт e) происходит также изменение максимума полосы поглощения и при 970 см $^{-1}$, которая обусловлена $\delta(Al-OH)$.

Таким образом, при сопоставлении исследуемых продуктов, видно, что при увеличении содержания ионов фтора вначале происходят изменения, связанные с замещением координированной воды, затем происходят изменения и в количестве координированных OH^- -групп. По-видимому, в осадке образуется новое вещество $Al(OH)_2F\cdot nH_2O$.

При переходе к продукту e наблюдается резкое уменьшение полос поглощения с максимумами при 1030 и 970 см⁻¹, что связано, по-видимому, с превращением $Al(OH)_2F \cdot nH_2O$ в $Al(OH)F_2 \cdot nH_2O$. Этому переходу, действительно, должны соответствовать уменьшение поглощения в области OH^- -групп и увеличение поглощения в области v(Al-F), что и наблюдается в действительности. Результаты ИК спектроскопии свидетельствуют, что при переходе от продукта a к продукту e происходит постепенный переход:

$$\mathrm{Al}\,(\mathrm{OH})_3 \cdot n\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Al}\,(\mathrm{OH})_3 \cdot \mathrm{HF} \cdot n\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Al}\,(\mathrm{OH})_2\mathrm{F} \cdot n\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Al}\,(\mathrm{OH})\,\mathrm{F}_2 \cdot n\mathrm{H}_2\mathrm{O}$$

В продуктах ($\delta \tau$, $\delta \tau$, $\delta \tau$ и $\epsilon \tau$), полученных при нагревании, наблюдается уменьшение интенсивности полос поглощения валентных и деформационных колебаний координированных молекул воды (рис. 2). Начиная с продукта $\delta \tau$, в котором соотношение Al^{3+} : $F^-=1:0,92$, наблюда-

ется уменьшение интенсивности полос с максимумом при 970 см $^{-1}$, по сравнению с соответствующими полосами поглощения для продуктов, полученных при 25° С. Одновременно происходит более интенсивное изменение полос поглощения при 1155 и 1650 см $^{-1}$, которые соответствуют деформационным колебаниям δ (НОН) молекул воды. При нагревании продуктов ($\epsilon \tau$, $\epsilon \tau$, $\delta \tau$ и $\epsilon \tau$) при 130° С интенсивность указанных полос уменьшается (рис. 2, пунктир).

Отсутствие полос поглощения при 1030 см $^{-1}$ для продуктов $e\tau$, $e\tau$, $\partial \tau$ и $e\tau$, а также резкое уменьшение интенсивности полосы при 970 см $^{-1}$ указывают на различный механизм образования исследуемых продуктов

в зависимости от температуры.

При сопоставлении ИК спектров указанных продуктов можно предположить, что при комнатной температуре происходит образование внешнесферных комплексов гидроксосоединений алюминия с фтором, которые по мере увеличения содержания ионов фтора, постепенно превращаются во внутрисферные, так как количество ОН--групп также постепенно уменьшается.

При увеличении температуры вероятность образования внутрисферных комплексов увеличивается и при достижении соотношения Al^{3+} : $F^-=1:1$ образуются внутрисферные гидроксофторидные комплексы алюминия определенной структуры $Al(OH)_2F \cdot nH_2O$. При этом наблюдалось и изменение внешнего вида осадка. Начиная с продукта $e\tau$, осадки имеют кристаллическую структуру, по объему в два-три раза меньше, чем у

ненагретых продуктов, легче фильтруются и быстрее осаждаются.

Термогравиметрические исследования полученных продуктов также указывают на изменение их состава и свойств в зависимости от соотношения $A1^{3+}$: F^- . Как видно из рис. 3 и табл. 3, при нагревании продуктов a-e до $510-540^{\circ}$ С проявляются несколько сложных эндотермических эффектов, в результате которых происходит отщепление кристаллизационной воды до $200-210^{\circ}$ С и конституционной воды в интервале температур $210-360^{\circ}$ С, что связано с дегидратацией байерита и гидраргилита в осадке [8]. При дальнейшем увеличении температуры до $510-540^{\circ}$ С происходит отщепление оставшейся конституционной воды. При этой же температуре происходит выделение и фтористого водорода [12].

По мере увеличения содержания ионов фтора в продуктах (6-e) происходит изменение потери массы, рассчитанное из кривых ТГ (рис. 3, кривая $T\Gamma$) для каждого эндотермического эффекта. Потеря массы, связанная с первым эффектом, уменьшается постепенно от 23 до 6%. Потеря массы второго эффекта для продуктов $6-\partial$ увеличивается постепенно, а для продукта e резко сокращается и доходит до 8%. Суммарная потеря массы для указанных эффектов тоже уменьшается закономерно с увели-

чением содержания ионов фтора в твердых продуктах.

На основании полученных данных можно сделать вывод, что с увеличением содержания ионов фтора (до продукта ∂) происходит постепенное замещение кристаллизационной воды, связанное с потерей массы для соответствующего эффекта. В результате их нагревания одновременно с выделением кристаллизационной воды, по-видимому, происходит превращение и в составе продуктов, связанное с замещением OH^- -групп из $Al(OH)_3$ (растет потеря массы, связанная с отщеплением конституционной воды).

При сопоставлении полученных величин потери массы, найденных из $T\Gamma$ -кривых, с вычисленными данными, можно предположить, что при соотношении $Al^{3+}:F^-=1:1$ и более образуются внешнесферные гидроксофторидные комплексы алюминия типа $Al(OH)_3 \cdot HF \cdot nH_2O$, которые в результате нагревания превращаются в $Al(OH)_2F \cdot nH_2O$. При дальнейшем увеличении соотношения $F^-:Al^{3+}$ до 2:1 (продукт e) происходит образование другого вещества, по всей вероятности, $Al(OH)F_2 \cdot nH_2O$, т. е. увеличивается вероятность образования внутрисферных гидроксофторидных комплексов алюминия, что согласуется и с данными ИК спектроскопии.

При анализе дериватограмм продуктов $\delta \tau$, $\epsilon \tau$, $\epsilon \tau$, $\partial \tau$ и $\epsilon \tau$ (рис. 3 и табл. 3) видно, что до температуры $460-510^\circ$ С для них тоже характерно

проявление трех эффектов. Для первых двух эффектов, как и в случаененагретых продуктов, наблюдается закономерное изменение потери мас-

сы при увеличении концентрации ионов фтора.

Как видно из табл. 3, для продуктов $\epsilon \tau$, $\epsilon \tau$ и $\partial \tau$ первый эффект, связанный с отщеплением координированной воды, намного меньше, чем второй, который связан с отщеплением конституционной воды. Можнопредположить, что в продуктах в основном содержится вещество состава $Al(OH)_2F \cdot nH_2O$. По мере увеличения содержания ионов фтора количество указанного вещества увеличивается и соответственно растет потеря массы для второго эффекта. При достижении соотношения Al³⁺: F⁻= =1:2.25 (продукт e) в продукте присутствует в основном вещество другого состава $Al(OH)F_2 \cdot nH_2O$.

Так как в продукте er уменьшается количество ОН $^-$ групп по сравнению с продуктом гт, на термограмме наблюдается уменьшение потери

массы второго эффекта.

При сопоставлении термограмм ненагретых продуктов (s-e) с соответствующими термограммами нагретых (er - er) видно, что как при увеличении концентрации ионов фтора в твердых продуктах, так и при повышении температуры их получения увеличивается вероятность обра-

зования внутрисферных комплексов гидроксофторида алюминия.

Таким образом, нами показано, что при начальных соотношениях концентраций $c_{\text{Al}^{3+}}: c_{\text{F}} = 1:0,5$ и менее, которые обычно наблюдаются при сорбции ионов фтора на гидроксиде алюминия в процессе обесфторивания природных вод, происходит образование внешнесферных гидроксофторилных комплексов алюминия. В более концентрированных растворах, как видно из полученных данных, а также из данных [5], образуются внутрисферные гидроксофторидные комплексы алюминия.

Литература

1. Клейнер К. Е. Ж. общ. химии, 1950, т. 20, № 10, с. 1747.
2. Буслаев Ю. А., Петросянц С. П. Коорд. химия, 1979, т. 5, № 2, с. 163.
3. Тананаев И. В., Виноградова А. Д. Ж. неорган. химии, 1957, т. 2, № 10, с. 2455.
4. Савченко Г. С., Тананаев И. В. Ж. общ. химии, 1951, т. 21, с. 2235.
5. Каторина О. В., Масалович В. М., Коробицын А. С. и др. Ж. неорган. химии, 1950 п. 25 № 8. с. 2284

1980, т. 25, № 8, с. 2281. 6. Коробицын А. С., Шапарова Г. Н., Каторина О. Н. и др. Ж. прикл. химии, 1980, т. 53, № 10, с. 2350.

7. Crarke A. N., Wilson D. J. Separ Sci., 1975, v. 10, № 4, p. 417. 8. Криворучко О. П., Буянов Р. А., Федотов М. А. и др. Ж. неорган. химии, 1978, т. 23, № 7, с. 1798.

9. Sengupta A. K., Sew K. Ind. J. Chem., 1979, v. 17A, № 1, p. 107.
10. Nicolescu A. V., Hurich Yasser, Nicolescu A. Rev. chim., 1980, v. 31, № 10, p. 976.
11. Иванов-Эмин Б. Н., Мельядо Кампос В., Зайцев Б. Е. и др. Ж. неорган. химии, 1973, **т**. 18, № 11, **с**. 2942.

12. Москвитин В. И., Ушаков Д. И. Изв. высш. уч. завед. СССР, Цветная металлургия, 1977, № 5, с. 87.

Институт прикладной физики AH MCCP

Поступила в редакцию **27.III.1984**