УДК 621.794.61

Л.К. Кушнер, ст. науч. сотр.
БГУИР, Минск;
И.И. Курило, доц., канд. хим. наук
БГТУ, Минск;
И.И. Кузьмар, канд. техн. наук; А.А. Хмыль, проф., д-р техн. наук;
Н.В. Дежкунов, доц., канд. техн. наук; Н.В. Богуш, науч. сотр.
БГУИР, Минск

ЗАКОНОМЕРНОСТИ МЕДНЕНИЯ
В СУЛЬФАТНЫХ ЭЛЕКТРОЛИТАХ

Тенденция к большей интеграции и миниатюризации изделий микроэлектроники, появление высокоплотных печатных плат с высоким соотношением толщины платы и диаметра отверстий особенно остро ставят проблему выравнивания металлизации на поверхности изделия и в отверстиях, обусловленную неоднородностью распределения плотности тока и, вследствие этого, неоднородными условиями диффузии, и катодной концентрационной поляризацией.

Для выравнивания градиента тока в отверстиях и на поверхности, приводящего к неравномерной металлизации, используются выравнивающие добавки, которые создают барьерный слой в местах наибольших градиентов, т.е. на поверхности и в углах, замедляя там осаждение металла, наращивание происходит в углублениях, что приводит к выравниванию поверхности [1]. Одним из основных приемов выравнивания металлизации, особенно при необходимости металлизации глухих отверстий, является нестационарный электролиз, позволяющий изменением только формы и параметров тока управлять электродными процессами и воздействовать на скорость осаждения, структуру и свойства покрытий. При импульсной металлизации с реверсом тока при обратном импульсе идет анодное стравливание металла на больших градиентах тока, то есть именно там, где произошло большое наращивание при прямом токе. Кроме того, происходит в интенсивное разрушение концентрационной катодной поляризации, что способствует обновлению раствора в прикатодном слое. Эффективным способом интенсификации обмена электролита является электросаждение при воздействии ультразвука. Его роль будет возрастать при металлизации мелких отверстий (особенно глухих) с высоким аспектным отношением.

В работе исследовано влияние ультразвуковых колебаний (УЗК) и нестационарных режимов электролиза на физико-химические зако-
номерности процесса медрения в сульфатном электролите при различ­ных концентрациях сульфата меди и серной кислоты в присутс­вии ионов хлора. Электроосаждение при воздействии ультразвуковых колебаний проводили с использованием экспериментальной ультра­звуковой установки, включающей генератор УЗГ 53-22 с пьезокера­мическим излучателем, работающим на частоте 36,7-38 кГц, мощ­ность акустическая 15 Вт, потребляемая мощность 40 Вт, интенсив­ность 0,058-2,1 Вт/см².

Установлено, что ультразвук снижает катодную поляризацию процесса медрения, повышает предельный ток и допустимую плот­ность тока, а, следовательно, позволяет интенсифицировать процесс электроосаждения (рисунок 1).

Рисунок 1 – Вольтамперные характеристики процесса медрения в сульфат­ных электролитах без добавок (а,б) и с комплексной выравнивающей добавкой (в) при различных концентрациях серной кислоты и сульфата меди: а - соответственно 180 и 80 г/л; б, в – 100 и 190 г/л

Ультразвук ускоряет процесс зародышеобразования и уменьшает размер зародышей (рисунок 2).

Рисунок 2 – Влияние интенсивности ультразвука на скорость зародышеобразования и радиус критического зародыша медных осадков.

150
Рассеивающая способность электролита характеризует равно-
мерность распределения покрытия по поверхности детали и зависит
от состава электролита и условий электролиза. Измерение рассеи-
вающей способности по току (РСт) проводили в щелевой ячейке Мо-
лера с пятисекционным разборным катодом.

Исследовано влияние параметров периодического тока и ульт-
развuka на рассеивающую способность сульфатных электролитов
медения, содержащих выравнивающие добавки. Осаждение прово-
дили на высокочастотном источнике питания гальванической ванны
импульсным током ИП 15-5, предназначенном для формирования в
гальванической ванне импульсов тока положительной и отрица-
тельной полярности. При исследованиях частота импульсного тока изме-
нялась от 1 до 1000 Гц, амплитудная плотность тока – от 1 до
10 А/дм², длительность импульса и паузы – от 0,1 до 100 мс.

Результаты исследований приведены в таблицах 1 и 2. Установ-
лено, что введение в состав электролита используемых выравниваю-
щих добавок (солей третичных аминов) в целом не повышает рассеи-
вающую способность. Ультразвук при малых интенсивностях (0,06-
0,3 Вт/см²) может увеличивать РСт электролита, причем эффектив-
ность воздействия зависит от состава электролита и плотности тока.

Таблица 1 – Влияние условий электролиза на рассеивающую способность
электролитов медения

<table>
<thead>
<tr>
<th>Электролит</th>
<th>i, A/дм²</th>
<th>Интенсивность УЗК, Вт/см²</th>
<th>РСт, %</th>
<th>Электролит</th>
<th>i, A/дм²</th>
<th>Интенсивность УЗК, Вт/см²</th>
<th>РСт, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бел без добавок</td>
<td>1</td>
<td>32,09</td>
<td></td>
<td>Добавка №1</td>
<td>3</td>
<td>0,06</td>
<td>40,55</td>
</tr>
<tr>
<td>Бел без добавок</td>
<td>2</td>
<td>38,5</td>
<td></td>
<td>Добавка №1</td>
<td>3</td>
<td>0,11</td>
<td>32,80</td>
</tr>
<tr>
<td>Добавка №1</td>
<td>1</td>
<td>47,62</td>
<td></td>
<td>Добавка №4</td>
<td>2</td>
<td>27,26</td>
<td></td>
</tr>
<tr>
<td>Добавка №1</td>
<td>2</td>
<td>38,54</td>
<td></td>
<td>Добавка №4</td>
<td>2</td>
<td>0,06</td>
<td>37,67</td>
</tr>
<tr>
<td>Добавка №1</td>
<td>2</td>
<td>0,06</td>
<td>28,47</td>
<td>Добавка №4</td>
<td>2</td>
<td>0,11</td>
<td>29,46</td>
</tr>
<tr>
<td>Добавка №1</td>
<td>2</td>
<td>0,11</td>
<td>50,46</td>
<td>Добавка №4</td>
<td>2</td>
<td>0,75</td>
<td>26,38</td>
</tr>
<tr>
<td>Добавка №1</td>
<td>2</td>
<td>0,3</td>
<td>38,56</td>
<td>Добавка №4</td>
<td>3</td>
<td>33,35</td>
<td></td>
</tr>
<tr>
<td>Добавка №1</td>
<td>2</td>
<td>0,7</td>
<td>21,73</td>
<td>Добавка №4</td>
<td>3</td>
<td>0,06</td>
<td>38,62</td>
</tr>
<tr>
<td>Добавка №1</td>
<td>3</td>
<td>38,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В сульфатном электролите медения без выравнивающих добавок
частота реверсированного тока (РТ) при соотношении \(\tau_{пр}:\tau_{обр}=10:1 \)
не оказывает заметного влияния на РСт в отличие от электролита с
доб. №3, когда рассеивающая способность увеличивается от 37% при
0,9 Гц до 48% при 180-1000 Гц. Реверсированный ток позволяет повысить
РСт на 18-35% с увеличением плотности тока и при соотношении
длительностей прямого и обратного импульсов \(\tau_{пр}:\tau_{обр} \) до 10-30:1. Положительное
влияние на рассеивающую способность оказывает по-
вышение плотности анондного тока, что позволяет увеличить равномерность покрытия и при низкой частоте РТ. На импульсном токе (ИТ) максимальная рассеивающая способность получена при частоте 100 Гц и скважности 1,25-2,5, изменение частоты в сторону уменьшения и увеличения привело к снижению величины рассеивающей способности.

Таблица 2 - Влияние периодического тока на рассеивающую способность электролитов медения

<table>
<thead>
<tr>
<th>Условия электроосаждения</th>
<th>Условия электроосаждения</th>
<th>Условия электроосаждения</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_p, A/dm²</td>
<td>t_{p}, t_{op}, мс</td>
<td>PCτ, %</td>
</tr>
<tr>
<td>Без добавок</td>
<td>С добавкой № 3</td>
<td>Без добавок</td>
</tr>
<tr>
<td>0,5</td>
<td>23,84</td>
<td>1,0</td>
</tr>
<tr>
<td>1,5</td>
<td>37,50</td>
<td>2,0</td>
</tr>
<tr>
<td>2,0</td>
<td>10:1</td>
<td>40,19</td>
</tr>
<tr>
<td>2,0</td>
<td>1:0,1</td>
<td>40,84</td>
</tr>
<tr>
<td>2,0</td>
<td>20:1</td>
<td>44,77</td>
</tr>
<tr>
<td>2,0</td>
<td>30:1</td>
<td>56,16</td>
</tr>
<tr>
<td>2,5/6, 5</td>
<td>20:1</td>
<td>37,73</td>
</tr>
<tr>
<td>4/4</td>
<td>220:20</td>
<td>47,0</td>
</tr>
<tr>
<td>3,0</td>
<td>44,65</td>
<td>2,5/6,5</td>
</tr>
<tr>
<td>3,0</td>
<td>30:1</td>
<td>43,55</td>
</tr>
</tbody>
</table>

Таким образом, установлено, что использование при электроосаждении медных покрытий ультразвукового стимулирования и периодического тока позволяет не только улучшить качество и структуру (рисунок 3), эксплуатационные свойства осадков, но и повысить равномерность распределения покрытия по поверхности.

Рисунок 3 – Влияние периодического тока на структуру медных покрытий из электролита с выравнивающими добавками, $i_{rp}=2$ A/dm²
1. Кушнер Л.К. Электрохимическое осаждение меди при формировании TSV-межсоединений интегральных схем / Л.К.Кушнер, А.А. Хмыль, И.И. Кузьмар, Л.И. Степанова, С.К Лазарук, А.В. Долбик // Фундаментальные проблемы радиоэлектронного приборостроения. 2016, часть 4. – С.211-213

УДК 621.794.61

А.А. Касач, Г.М. Довгань, И.И. Курило, С.Л. Радченко, И.М. Жарский
Белорусский государственный технологический университет

ЭЛЕКТРООСАЖДЕНИЕ МЕДНЫХ ПОКРЫТИЙ
ИЗ СЕРНОКИСЛОГО ЭЛЕКТРОЛИТА МЕДНЕНИЯ
В СРЕДЕ УЛЬТРАЗВУКОВОГО ПОЛЯ

Электролитическое меднение является одним из наиболее распространенных гальванических процессов. Ценные физико-механические свойства электроосажденной меди обусловили широкое применение этих покрытий. Несмотря на то, что процесс гальванического меднения уже успешно применяется в промышленности, до настоящего времени весьма актуальным остается вопрос об изыскании путей его интенсификации. Известно, что одним из наиболее перспективных средств интенсификации электрохимических реакций является наложение ультразвукового (УЗ) поля [1].

Целью данной работы является изучение влияния параметров УЗ поля на кинетические особенности осаждения и микротвердость медных покрытий, полученных из сернокислого электролита меднения с повышенной рассеивающей способностью.

В результате анализа литературных источников и ранее проведенных исследований [2] был выбран сернокислый электролит меднения с повышенной рассеивающей способностью следующего состава, моль/дм³: CuSO₄·5H₂O – 0,32, H₂SO₄ – 1,63. Микротвердость медных образцов определяли с использованием оптического микроскопа – твердомера AFRI - MVDM8. Поляризационные исследования проводили с помощью потенциостата-галваниостата AUTOLAB PGSTAT302N. Генератором ультразвуковых колебаний являлся гомогенизатор ультразвуковой марки UP 200 Ht. Частота ультразвуковых колебаний составляла 26 кГц, выходная мощность – 1-200 Вт. Опре-