УДК 621.785.36+537.621.4+546.73+54-165

А. А. Затюпо, аспирант (БГТУ);

Л. А. Башкиров, доктор химических наук, профессор (БГТУ);

Г. С. Петров, кандидат химических наук, доцент (БГТУ);

Н. Н. Лубинский, кандидат химических наук, преподаватель (КИИ МЧС Республики Беларусь)

ФАЗОВЫЙ СОСТАВ, ЭЛЕКТРОПРОВОДНОСТЬ И ТЕРМО-ЭДС КОБАЛЬТИТОВ-ГАЛЛАТОВ САМАРИЯ SmC0_{1-x}Ga_xO₃

Керамическим методом получены образцы кобальтитов-галлатов самария SmCo_{1-x}Ga_xO₃. Определены параметры их кристаллической решетки. В интервале температур 300–1050 К на воздухе исследованы температурные зависимости электропроводности и термо-ЭДС. Установлено, что в твердых растворах SmCo_{1-x}Ga_xO₃ увеличение степени замещения ионов Co³⁺ ионами Ga³⁺ приводит к значительному уменьшению удельной электропроводности: от 27 См/см для SmCoO₃ до 0,16 См/см для твердого раствора с x = 0,5 (при T = 850 K). Температурные зависимости коэффициента термо-ЭДС показывают, что все образцы SmCo_{1-x}Ga_xO₃ являются полупроводниками *p*-типа. Установлено, что образец SmCo_{0.5}Ga_{0.5}O₃ имеет высокое значение коэффициента термо-ЭДС (3000 мкB/K) при температуре 650 К.

By means of a ceramic method the samples of samarium cobaltites-gallates were prepared. Parameters of their crystal lattice were determined. Temperature dependencies of electrical conduction and thermo-EMF were investigated in air at 300–1050 K. It is found that in SmCo_{1-x}Ga_xO₃ solid solutions increase of substitution degree of Co³⁺ ions by Ga³⁺ ions leads to the essential decrease of conductivity: from 27 S/cm for SmCoO₃ to 0,16 S/cm for solid solution with x = 0,5 (at T = 850 K). Temperature dependencies of the thermo-EMF coefficient show that all the SmCo_{1-x}Ga_xO₃ samples were semiconductors of *p*-type. It is stated that the SmCo_{0,5}Ga_{0,5}O₃ sample had a high thermo-EMF coefficient value (3000 μ V/K) at 650 K.

Введение. В настоящее время по-прежнему сохраняется высокий интерес к кобальтитам редкоземельных элементов со структурой перовскита, обладающих богатым набором свойств, часть которых присуща только им. Среди этих свойств выделяются гигантское магнитосопротивление, аномалии магнитной восприимчивости, термо-ЭДС, теплового расширения кристаллической решетки, а также переходы металл – полупроводник. Интерес к данным соединениям обусловлен возможностью их практического применения в качестве катализаторов, кислородных мембран, сенсоров газов, элементов твердотельных источников питания и других устройств [1]. Причем за основные особенности магнитных, электрических и структурных свойств редкоземельных кобальтитов ответственна конкуренция низкоспинового (LS) – $t_{2g}^6 e_g^0$, S = 0, $\mu_{3\phi} = 0$, высоко-спинового (HS) – $t_{2g}^4 e_g^2$, S = 2, $\mu_{3\phi} = 4,9\mu_B$ и промежуточноспинового (IS) – $t_{2g}^5 e_g^1$, S = 1, $\mu_{3\phi} = 2,83\mu_B$ состояний $3d^6$ -электронов ионов кобальта Со³⁺ [2]. Галлаты, благодаря структуре перовскита, толерантной к различного рода замещениям, также представляют интерес для экспериментов и поиска новых материалов, перспективных для практических применений в различных областях науки и техники [3]. Связь носителей электрического заряда и возбуждений кристаллической решетки влияет на электронные свойства оксидных соединений со структурой перовскита, включающих купраты,

манганиты и кобальтиты [4]. Наиболее изученным представителем семейства редкоземельных кобальтитов в настоящее время является LaCoO₃. Известно, что свойства соединений со структурой перовскита значительно изменяются при замене лантана другим редкоземельным элементом с меньшим ионным радиусом. При этом наблюдается постепенное смещение спинового перехода ионов Co³⁺ из LS-состояния в IS- и/или HS-состояние в сторону более высоких температур. Однако нами [5] и другими авторами [6] установлено, что такое смещение спинового перехода ионов кобальта Со³⁺ наблюдается и в двойных системах NdCoO₃-NdGaO₃, LaCoO₃ – LaGaO₃, в которых частичное замещение ионов Co³⁺ ионами Ga³⁺ приводит к увеличению параметров кристаллической решетки типа перовскита. В связи с этим можно ожидать, что в двойной системе SmCoO₃ -SmGaO₃ подобный переход ионов Co³⁺ из низкоспинового в промежуточно- и высокоспиновое состояние также будет смещаться в сторону более высоких температур при увеличении сте-пени замещения ионов Co³⁺ ионами Ga³⁺.

В связи с этим целью данной работы является изучение влияния изовалентного замещения в SmCoO₃ парамагнитных ионов Co³⁺ с частично заполненной *3d*-оболочкой диамагнитными ионами Ga³⁺ с полностью заполненной *3d*-оболочкой на электропроводность и термо-ЭДС образующихся твердых растворов SmCo_{1-r}Ga_rO₃.

Методика эксперимента. Кобальтитыгаллаты самария SmCo_{1-x}Ga_xO₃ ($0 \le x \le 1,0$) получали керамическим методом из оксидов самария, кобальта (Со₃О₄), галлия. Все реактивы имели квалификацию «х.ч.». Сначала при синтезе кобальтитов-галлатов SmCo_{1-r}Ga_rO₃ использовали порошок реактивного оксида самария без предварительной термообработки (образцы серии А). Однако рентгенофазовый анализ такого порошка оксида самария показал, что он в основном состоит из фазы Sm(OH)3, фазы B-Sm₂O₃ с моноклинной структурой, а также фазы Sm₂O₂CO₃. В связи с этим были также получены образцы кобальтитов-галлатов самария SmCo_{1-x}Ga_xO₃ (x = 0; 0,3; 0,5; 0,7; 1,0) с использованием реактивного порошка оксида самария, обожженного на воздухе при температуре 1273 К в течение 2 ч (образцы серии Б). Порошки исходных оксидов, взятых в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице «Pulverizette 6» с добавлением этанола. Полученную шихту с добавлением этанола прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5-7 мм и затем отжигали при 1523 К на воздухе в течение 5 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм², которые отжигали при температуре 1523 К на воздухе в течение 5 ч.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCED с использованием CuK_{α}-излучения. Параметры кристаллической структуры исследованных кобальтитов-галлатов самария определяли при помощи рентгеноструктурного табличного процессора RTP и данных картотеки международного центра дифракционных данных (ICDD JCPDS).

Электропроводность полученных керамических образцов кобальтитов-галлатов самария измеряли на постоянном токе на воздухе в интервале температур 300–1050 К четырехконтактным методом с использованием серебряных электродов, нанесенных тонким слоем на торцевые поверхности образцов размером 5×5×4 мм путем вжигания серебряной пасты.

Коэффициент термо-ЭДС (α) определяли относительно серебра в интервале температур 300–1050 К на воздухе в динамическом режиме со скоростью нагрева и охлаждения 3–5 К/мин при градиенте температур 20–25 К на образцах размером 5×5×27 мм.

Результаты и их обсуждение. Анализ полученных рентгенограмм для образцов кобальтитов-галлатов самария серии A (рис. 1) показывает, что при увеличении степени замещения x ионов Co³⁺ ионами Ga³⁺ от 0 до 0,9 все рентгеновские линии фазы со структурой перовскита SmCo_{1-r}Ga_rO₃ постепенно смещаются в сторону меньших углов 20. Это свидетельствует о том, что в указанном интервале х образуется непрерывный ряд твердых растворов SmCo_{1-x}Ga_xO₃ со структурой орторомбически искаженного перовскита. Однако образцы SmCo_{1-x}Ga_xO₃ с $0,2 \le x \le 0,5$, кроме основной фазы твердых растворов SmCo_{1-x}Ga_xO₃ со структурой орторомбически искаженного перовскита, параметры кристаллической решетки а, b, c которых в зависимости от степени замещения х изменяются линейно, содержали также в небольшом количестве фазу Sm₄Ga₂O₉. Образцы SmCo_{1-x}Ga_xO₃ с $0.5 < x \le 0.9$, кроме фаз $SmCo_{1-x}Ga_xO_3$, $Sm_4Ga_2O_9$, содержали также фазу Sm₃Ga₅O₁₂ со структурой граната, количество которой при увеличении х до 0,9 постепенно увеличивалось, и образец с x = 1,0 в основном состоял из фаз Sm₃Ga₅O₁₂, Sm₄Ga₂O₉ и в небольших количествах фазы SmGaO₃ со структурой перовскита и оксида Ga₂O₃.

Рис. 1. Рентгеновские дифрактограммы образцов системы $SmCo_{1-x}Ga_xO_3$ серии А при различных значениях *x*: I - 0; 2 - 0,1; 3 - 0,2; 4 - 0,3; 5 - 0,4; 6 - 0,5; 7 - 0,6; 8 - 0,7; 9 - 0,8; 10 - 0,9; 11 - 1,0

Анализ рентгенограмм образцов серии Б показал, что они практически идентичны рентгеновским дифрактограммам образцов серии А при x = 0; 0,3; 0,5; 0,7; 1,0. Параметры кристаллической решетки a, b, c твердых растворов SmCo_{1-x}Ga_xO₃ со структурой перовскита этих образцов отличаются незначительно от значений для образцов серии А при x = 0; 0,3; 0,5; 0,7; 1,0. Однако степень орторомбического искажения кристаллической решетки перовскита образцов $SmCo_{1-x}Ga_xO_3$ серии Б при одинаковом значении *x* несколько меньше, чем образцов серии А. Очевидно, это связано с тем, что образцы серии А, приготовленные из исходного реактивного порошка «оксида самария», содержат небольшой избыток оксида кобальта (табл. 1).

Для кобальтита самария SmCoO₃ серии A параметры кристаллической решетки *a*, *b*, *c* хорошо согласуются с литературными данными [7]. Увеличение степени замещения *x* до 0,9 для образцов SmCo_{1-x}Ga_xO₃ серии A приводит также к постепенному увеличению степени орторомбического искажения структуры перовскита: от значения 1,234 для SmCoO₃ до 2,289 для SmCo_{0.1}Ga_{0.9}O₃.

Температурные зависимости удельной электропроводности (σ) образцов кобальтитовгаллатов самария SmCo_{1-x}Ga_xO₃ серии A, Б приведены на рис. 2, 3.

Результаты измерения удельной электропроводности (σ) образцов кобальтитов-галлатов самария SmCo_{1-x}Ga_xO₃ серии A, Б показывают, что увеличение степени замещения *x* в SmCoO₃ ионов Co³⁺ с частично заполненной 3*d*-оболочкой ионами Ga³⁺ с полностью заполненной 3*d*-оболочкой приводит к постепенному уменьшению удельной электропроводности. Например, при температуре 850 К удельная электропроводность исследованных образцов SmCo_{1-x}Ga_xO₃ серии A уменьшается от значения $\sigma = 23 \text{ См} \cdot \text{см}^{-1}$ для SmCoO₃ до 0,45; 0,21; 0,16 Cм·см⁻¹ для образцов с *x* = 0,3; 0,4; 0,5 соответственно (рис. 2).

Рис. 2. Зависимость Іпо от T^{-1} для образцов SmCo_{1-x}Ga_xO₃ серии А при различных значениях *x*: I - 0; 2 - 0, 1; 3 - 0, 2; 4 - 0, 3; 5 - 0, 4; 6 - 0, 5

Удельная электропроводность при 850 К образцов SmCo_{1-x}Ga_xO₃ серии Б при увеличении степени замещения ионов Co³⁺ ионами Ga³⁺ также постепенно уменьшается от значения $\sigma = 52,13 \text{ См} \cdot \text{сm}^{-1}$ для SmCoO₃ до 0,27 Cм·см⁻¹ для образца с x = 0,5 (рис. 3).

Такое значительное уменьшение удельной электропроводности образцов кобальтитовгаллатов самария $SmCo_{1-x}Ga_xO_3$ при увеличении степени замещения *x* ионов Co^{3+} ионами Ga^{3+} , можно объяснить перескоковым (поляронным) механизмом электропроводности.

Таблица 1

Степень замещения <i>х</i>	Образцы серии А					Образцы серии Б				
	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³	$\varepsilon = \frac{b-a}{a} \cdot 10^2$	<i>a</i> , Å	b, Å	<i>c</i> , Å	V, Å ³	$\varepsilon = \frac{b-a}{a} \cdot 10^2$
0	5,2847	5,3499	7,4971	211,963	1,234	5,2901	5,3454	7,4924	211,869	1,045
0,1	5,3030	5,3589	7,5105	213,435	1,054	-	-	-	_	_
0,2	5,3074	5,3812	7,5270	214,976	1,391	-	-	-	_	—
0,3	5,3172	5,3992	7,5586	216,992	1,542	5,3083	5,3772	7,5304	214,946	1,298
0,4	5,3284	5,4137	7,5719	218,425	1,600	-	-	-	_	—
0,5	5,3385	5,4340	7,5895	220,167	1,789	5,3434	5,4251	7,5523	218,930	1,529
0,6	5,3445	5,4443	7,5977	221,074	1,867	_	_	_	_	_
0,7	5,3467	5,4521	7,5886	221,214	1,971	5,3432	5,4537	7,5955	221,335	2,068
0,8	5,3508	5,4664	7,6094	222,572	2,160	_	_	_	_	_
0,9	5,3566	5,4792	7,6265	223,837	2,289	_	_	_	_	_

Параметры кристаллической решетки *a*, *b*, *c*, объем элементарной ячейки *V* и степень орторомбического искажения (£) кристаллической решетки образцов серии А, Б кобальтитов-галлатов SmCo_{1-x}Ga_xO₃

Рис. 3. Зависимость $\ln \sigma$ от T^{-1} для образцов SmCo_{1-x}Ga_xO₃ серии Б при различных значениях *x*: I - 0; 2 - 0.3; 3 - 0.5

При замещении некоторой доли ионов Co^{3+} ионами Ga^{3+} происходит «электрический обрыв» ряда ($Co^{3+} \cdot e$) + $Co^{3+} + ... + Co^{3+}$, по которому перемещается электрон (полярон малого радиуса) от комплекса ($Co^{3+} \cdot e$), образованного на границе кобальтит-галлат самария – отрицательный электрод, к соседнему иону Co^{3+} и далее к другим ионам Co^{3+} этого ряда, который обрывается на ионе Ga^{3+} , в результате чего и происходит уменьшение электропроводности.

При этом аномалия на зависимости $\ln \sigma$ от T^{-1} в области высоких температур для SmCoO₃ серии Б (рис. 3, кривая *I*), обусловленная переходом в стадию завершения протекания (в области промежуточных температур) размытого фазового перехода полупроводник – металл и спинового перехода ионов Co³⁺, вероятно, постепенно с увеличением степени замещения *x* ионов Co³⁺ ионами Ga³⁺ смещается в сторону температур выше 1100 К. Поэтому для образцов SmCo_{1-x}Ga_xO₃ при *x* = 0,3; 0,5 эта аномалия в области температур 900–1100 К отсутствует.

Значения энергии активации электропроводности образцов SmCo_{1-x}Ga_xO₃ серии A ($0 \le x \le 0.5$), определенные по линейным участкам зависимостей ln σ от T^{-1} (рис. 2) в области низких (E_{A_1}) и промежуточных (E_{A_2}) температур, приведены в табл. 2.

Анализ данных табл. 2 показывает, что увеличение степени замещения *x* приводит к постепенному уменьшению величины энергии активации E_{A_1} : от 0,35 эВ для SmCoO₃ до 0,23 эВ для SmCo_{0,5}Ga_{0,5}O₃. Величина энергии активации E_{A_2} также постепенно уменьшается: от 0,65 эВ для SmCoO₃ до 0,50 эВ для x = 0,3при увеличении степени замещения *x*.

Значения энергии активации электропроводности (E_A) в области низких, промежуточных, высоких температур ($E_{A_1}, E_{A_2}, E_{A_3}$ соответственно)

Таблица 2

для образцов SmCo_{1-x}Ga_xO₃ серии А

x	Е ₄₁ , эВ	ΔT_1 , K	Е ₄₂ , эВ	ΔT_2 , K	Е ₄₃ , эВ	ΔT_3 , K
0	0,35	305-390	0,65	410-630	0,25	670–1075
0,1	0,33	310-380	0,61	400-1080	_	_
0,2	0,31	300-360	0,53	370-840	_	_
0,3	0,30	300-380	0,50	390-780	_	_
0,4	0,32	310-340	0,59	370-780	_	_
0,5	0,23	290-340	0,52	360-610	_	_

Для образца SmCoO₃ серии Б энергия активации электропроводности, рассчитанная по линейному участку зависимости $\ln \sigma$ от T^{-1} для интервала температур 480–700 K, равна 0,68 эВ, а для образца SmCo_{0.5}Ga_{0.5}O₃ для более протяженного интервала температур 300–800 K (рис. 3, кривая 3) она равняется 0,63 эВ.

Были также получены температурные зависимости энергии активации электропроводности (E_A), рассчитанные по значениям производной $d \ln \sigma / dT^{-1}$ для SmCoO₃ серии A и Б при различных температурах (рис. 4).

Рис. 4. Температурная зависимость энергии активации электропроводности (E_A) , рассчитанная по значениям производной $d \ln \sigma / dT^{-1}$ для SmCoO₃ серии A (1) и SmCoO₃ серии Б (2)

Полученные температурные зависимости энергии активации электропроводности для кобальтита самария аналогичны зависимостям, приведенным в работе [8]. Так, для SmCoO₃ в интервале температур 100–800 К максимальное значение энергии активации электропроводности равно 0,95 эВ и отвечает температуре 640 К. В настоящей работе получено, что для SmCoO₃ серии А максимум на зависимостях E_A от T расположен при температуре 575 К, при кото-

рой $E_{A\text{макс}} = 0,72$ эВ, а для SmCoO₃ серии Б $E_{A\text{макс}} = 0,65$ эВ при $T_{E_{A\text{макс}}} = 610$ К. Температурные зависимости коэффициента

Температурные зависимости коэффициента термо-ЭДС (S) образцов кобальтитов-галлатов самария $SmCo_{1-x}Ga_xO_3$ серий A и Б приведены на рис. 5, 6 соответственно.

Рис. 5. Температурная зависимость коэффициента термо-ЭДС образцов кобальтитов-галлатов SmCo_{1-x}Ga_xO₃ серии А при различной степени замещения x: a - 0,2; $\delta - 0,3$; e - 0,5

Рис. 6. Температурная зависимость коэффициента термо-ЭДС образцов кобальтитов-галлатов SmCo_{1-x}Ga_xO₃ серии Б при различной степени замещения *x*: a - 0; $\delta - 0$,5

Представленные температурные зависимости коэффициента термо-ЭДС показывают, что электропроводность всех исследованных образцов SmCo_{1-x}Ga_xO₃ является полупроводниковой электропроводностью *p*-типа.

Коэффициент термо-ЭДС образцов SmCo_{1-x}Ga_xO₃ серии А при повышении температуры от 350-400 до 1100 К сначала увеличивается, достигает максимального значения и затем уменьшается. При этом частичное замещение ионов Co³⁺ ионами Ga³⁺ приводит к смещению положения такого максимума в сторону более высоких температур. Для образцов серии A при x = 0,2; 0,3; 0,5 максимум коэффициента термо-ЭДС расположен при температурах 550, 680, 650 К соответственно (рис. 5). Коэффициент термо-ЭДС образца SmCoO₃ серии Б (рис. 6, *a*) при увеличении температуры от 400 до 700 К уменьшается почти на порядок, и при дальнейшем увеличении температуры до 1100 К изменяется незначительно, что соответствует данным, приведенным в работе [9].

Температурные зависимости термо-ЭДС образца SmCoO₃ серии Б, полученные при нагревании и охлаждении, были одинаковыми, но несколько смещены друг от друга. Следует отметить, что величина 3000 мкВ/К коэффициента термо-ЭДС образца SmCo_{0.5}Ga_{0.5}O₃ серии А (рис. 5, ϵ) при температуре 650 К является наибольшей среди приведенных в литературе [9] величин коэффициента термо-ЭДС кобальтитов редкоземельных элементов со структурой перовскита.

Заключение. Установлено, что в двойной системе SmCoO₃ – SmGaO₃ практически однофазные твердые растворы SmCo_{1-x}Ga_xO₃ получаются лишь при значениях $0 \le x \le 0,5$. При значениях x > 0,5 образцы SmCo_{1-x}Ga_xO₃ содержат также фазу Sm₃Ga₅O₁₂ с кристаллической структурой граната.

Установлено, что аномалия на температурной зависимости электропроводности SmCo_{1-r}Ga_rO₃, обусловленная присутствием в интервале температур 550-950 К размытого фазового перехода полупроводник - металл, постепенно уменьшается с увеличением содержания ионов галлия, и при x > 0,5 она практически отсутствует. Были рассчитаны энергии активации электропроводности для SmCoO₃ серии А и Б по тангенсу угла наклона трех линейных участков зависимости от Т⁻¹ для областей низких, промежуточных и высоких температур соответственно ($E_{A_1}, E_{A_2}, E_{A_2}$ соответственно) и по значениям производной $d\ln\sigma / dT^{-1}$ при различных температурах (E_A). Полученные значения для кобальтита самария согласуются с литературными данными.

термо-ЭДС Коэффициент (S)для $SmCo_{1-r}Ga_rO_3$ в исследованном интервале температур 400-1100 К имеет положительный знак. Для большинства образцов SmCo_{1-x}Ga_xO₃ увеличение температуры до 650-700 К приводит к увеличению коэффициента термо-ЭДС, и при дальнейшем росте температур наблюдается его плавное уменьшение. При этом следует отметить, что величина коэффициента термо-ЭДС образца SmCo_{0,5}Ga_{0,5}O₃ при температуре 650 К равна 3000 мкВ/К и является наибольшей среди приводимых в литературе величин коэффициента термо-ЭДС кобальтитов редкоземельных элементов со структурой перовскита.

Работа выполнена в рамках задания № 47 ГКПНИ «Химические материалы и реагенты».

Литература

1. Низкотемпературное магнитное поведение редкоземельных кобальтитов GdCoO₃ и SmCoO₃ / Н. Б. Иванова [и др.] // Физика твердого тела. – 2007. – № 11. – С. 2027–2032.

2. Особенности спинового, зарядового и орбитального упорядочений в кобальтитах / Н. Б. Иванова [и др.] // Успехи физических наук. – 2009. – Т. 179, № 8. – С. 837–860.

3. Чежина, Н. В. Магнитное разбавление в системе La(Sr)CoO₃ – LaGaO₃ / Н. В. Чежина, Э. В. Жарикова, М. Н. Князев // Журнал общей химии. – 2010. – Т. 80, № 12. – С. 1937–1942.

4. The spin states of cobalt ions and thermo-EMF in erbium and holmium cobaltites / V. F. Khirnyi [et al.] // Functional materials. – 2009. – Vol. 16, No. 2. – P. 150–154.

5. Лубинский, Н. Н. Физико-химические свойства твердых растворов кобальтитовгаллатов лантана, неодима со структурой перовскита: дис. ... канд. хим. наук: 02.00.04. – Минск, 2009. – 182 л.

6. Kyômen, T. Negative cooperative effect on the spin-state excitation in $LaCoO_3 / T$. Kyômen, Y. Asaka, M. Itoh // Phys. Rev. B. - 2003. - Vol. 67, No. 1. - P. 144424-1-144424-6.

7. Портной, К. И. Кислородные соединения редкоземельных элементов / К. И. Портной, Н. И. Тимофеева. – М.: Металлургия, 1986. – 480 с.

8. Yamaguchi, S. Bandwidth dependence of insulator-metal transitions in perovsKite cobalt oxides / S. Yamaguchi, Y. OKimoto, Y. ToKura // Phys. Rev. B. – 1996. – Vol. 54, No. 16. – P. 11022–11025.

9. Structural anomalies associated with the electronic and spin transitions in $LaCoO_3$ / K. Knižek [et al.] // The European Phys. Jour. B. – 2005. – Vol. 47, No. 2. – P. 213–220.

Поступила 28.02.2011