В методике отсутствуют неконтролируемые погрешности. Точность предла метода определяется точностью термостатирования и точностью измерения да а также точностью взвешивания и чистотой реактивов. В проведенных измер пенх точность термостатирования составляла 0,003 град, точность отсчета показаний дугного манометра 0.1 мм рт. ст., точность взвенивания 0.0002 г (масса проб $0.05 \div 5$ г).

> Поступила 24.V.1972

ЛИТЕРАТУРА

1. И. Р. Кричевский, Н. Е. Хазанова, Л. П. Смирнов. Ж. физ. химии, 34, 1702, 1960.

Статья полностью депонирована в ВИНИТИ за № 5011-72 Деп. от 3 ноября

УДК 66-971:536.70:546.131

ТЕРМОДИНАМИЧЕСКОЕ ИЗУЧЕНИЕ СИСТЕМЫ CoCl₂ — КСl

Г. И. Новиков, А. К. Баев, С. Е. Орехова

Измерено давление насыщенного пара в исследуемой системе над расплавами с содержанием 25, 50 и 75 мол. % KCl статическим методом с кварцевым мембранным нуль-манометром [1]. Полученные данные записываются в виде уравнений 25 мол.% КСІ

 $\lg p = 8,424 \pm 0,159 - (8006,3 \pm 182) / T (740-950^{\circ} C),$

50 мол. % КС1

 $\lg p = 8,298 \pm 0,080 - (8169,4 \pm 90) / T (770-950^{\circ} C),$

75 мол. % КС1

 $\lg p = 8,195 \pm 0,170 - (8546,7 \pm 196) / T (850-950^{\circ} C).$

Брутто-состав пара определяли методом точки кипения [2]. Для исследований брали навеску смеси 0,3—0,5 г, возгоны конденсировались в холодной части ампулы. Сконденсировавшуюся смесь анализировали на содержание кобальта и калия. Значения величин $N=\bar{n}_{\text{COCl}_2}/\bar{n}_{\text{KCl}}$, полученные для трех указанных составов, практически не зависят от температуры в исследуемом интервале. Это явление, общее для всех исследуемых таким образом систем.

На основании анализа экспериментальных данных и имеющихся литературных [3] сделан вывод о наличии в паре комплексного соединения КСоС1. Для расчета состава пара в системе мы воспользовались методом, описанным в [4]. Состав пара рассчитан для расплавов с содержанием 25, 50 и 75 мол.% КСІ. При расчете использовались экспериментальные данные по давлению пара и значения величин N, а также литературные данные по димеризации индивидуальных хлоридов — компонентов системы [5, 6]. Расчет состава пара произведен из предположения, что пар образован молекулярными формами: KCl, K_2Cl_2 , $KCoCl_3$, $CoCl_2$, Co_2Cl_4 . Из температурной зависимости $\lg K_p = f(1/T)$ определены термодинамические

характеристики (ΔH_T° и ΔS_T°) процесса

$$(KCoCl3) = (KCl) + (CoCl2),$$
(1)

равные 47.8 ± 2 ккал/моль и 30 ± 3 э.е. соответственно. Величина ΔH_T° процесса (1) рассчитана с использованием зпачений констант равновесий при разных температурах и величины ΔS_T °, средней для всех изучаемых составов системы.

Белорусский технологический институт им. С. М. Кирова Минск

Поступила 14.1.1972

ЛИТЕРАТУРА

- 1. Г. И. Новиков, А. В. Суворов, Заводск. лаборатория. № 6, 750, 1959. 2. Г. И. Новиков, О. Г. Поляченок. Ж. неорган. химии, 8, 1951, 1961. 3. V. Rao, P. Kush, J. Chem. Phys., 34, 832, 1961. 4. А. Б. Поспелов, Г. И. Новиков. Сб. «Общая и прикладная химия», вып. I,
- 9, 1969. 5. R. C. Schoonmaker, A. H. Friedman, R. F. Poster, J. Chem. Phys., 31,
- 6. Y. Berhowitz, W. A. Chupka, J. Chem. Phys., 29, 653, 1958.

Статья полностью депонирована в ВИНИТИ за № 4957-72 Деп. от 3 ноября 1972 г.