

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ ПАРООБРАЗОВАНИЯ ПЯТИОКИСИ ФОСФОРА

Е. А. Кукушкина, О. Г. Полячёнок, Г. П. Дудчик, Г. Н. Новиков

Статическим методом с мембранным нуль-манометром, изготовленным из оптического кварца, измерено давление насыщенного и ненасыщенного пара пятиокиси фосфора. Многократно перегнанная безводная пятиокись фосфора вводилась в мембранную камеру нуль-манометра без доступа воздуха или синтезировалась в ней непосредственно из красного фосфора полупроводниковой чистоты и газообразного кислорода.

Установлено, что до 650° С безводная пятиокись фосфора не взаимодействует с кварцем. На основании экспериментальных данных по измерению давления насыщенного и ненасыщенного пара P_4O_{10} в присутствии газообразного кислорода и в его отсутствие диссоциация P_4O_{10} не обнаружена. Получено уравнение температурной зависимости давления насыщенного пара кристаллической пятиокиси фосфора (H-фор-

ма. 513-632 К):

lg p, [MM pt. ct.] =
$$18,45 \pm 0,24 - 5820 \pm 130 / T - 1,930 lg T - 1,515 \cdot 10^{-3} \cdot T$$
.

С учетом ΔC_p рассчитаны термодинамические характеристики процесса сублимации P_4O_{10} :

 ΔH°_{298} , ккал/моль = 24,41 ± 0,68,

$$\Delta S^{\circ}_{298}$$
, a.e. = 39,9 ± 1,3.

По этим значениям с использованием литературных данных определены стандартные термодинамические характеристики газообразной пятиокиси фосфора:

$$\Delta H^{\circ}_{f,298}(P_4O_{10})$$
, ккал/моль = -689.0 ± 1.7 ,

$$S^{\circ}_{298}(P_4O_{10})$$
, a.e. = 93,8 ± 2,8.

Величина абсолютной энтроппи совпала с табличной, рассчитанной по молекулярным константам (94,3 э.е.).

Белорусский технологический институт Минск Поступила 10.V.1972

Статья полностью депонирована в ВИНИТИ за № 5004—72 Деп. от 3 ноября 1972 г.

УДК 541.11

ЭНТАЛЬПИИ ОБРАЗОВАНИЯ И ТЕПЛОЕМКОСТИ ТВЕРДЫХ РАСТВОРОВ $(Zn_3As_2)_{1-x} \cdot (2CdTe)_x$

М. Н. Головей, Г. Н. Шпырко, М. И. Теслевич

С помощью дифференциального микрокалоримстра Кальве измерены теплоты растворения при комнатной температуре твердых растворов $(Zn_3As_2)_{1-x} \cdot (2CdTe)_x$ и химических соединений Zn_3As_2 , CdTe в 8 н. HNO_3 . По полученным дапным рассчитаны энтальнии образования твердых растворов из Zn_3As_2 и CdTe и из элементов. Сделан вывод о паличии в интервале копцептраций $0 \le x \le 0,2$ областей твердых растворов теллурида кадмия в α - Zn_3As_2 и в β - Zn_3As_2 . Область сосуществования этих твердых растворов находится в интервале 0,03 < x < 0,07.

лан вывод о наличии в интервале копцентрации о $\approx x \approx 0.2$ ооластеи твердых растворов теллурида кадмия в α -Zn₃As₂ и в β -Zn₃As₂. Область сосуществования этих твердых растворов находится в интервале 0.03 < x < 0.07. Методом смешения на микрокалориметре Кальве измерсны средние теплоемкости твердых растворов в интервале 77—298 К и температурная зависимость средних теплоемкостей в интервале 298—600 К. По полученным данным рассчитаны теплоемкости при 298 К. Для всех исследованных составов отклонение от правила Неймана—

Коппа отрицательное и составляет 4-7%.

Ужгородский государственный университет

Поступила 16.VI.1972

Статья полностью депонирована в ВИНИТИ за № 5310—72 Деп. от 3 января 1973 г.