хорошо согласуется (с учетом теплот плавления и фазового перехода, а также теплоемкости самария [4]) с величиной, приведенной в цитированной выше статье [1]. Используя для процесса испарения самария значение ΔC_p , равное 11 кал./г-ат. град (значение C_p для $\mathrm{Sm}_{\mathrm{кидк}}$, равно 14 кал./г-ат. град [4], для $\mathrm{Sm}_{\mathrm{газ}}$ равно 3 кал./г-ат. град), получаем справедливое в широком температурном интервале уравнение: $\mathrm{lg}\,P = 27.32 - \frac{11910}{T} - 5.54\,\mathrm{lg}\,T$. Из этого уравнения следует, что температура кипения самария равна 1624° , ΔH испарения при этой температуре равно 33.6 ккал./г-ат., а $\Delta S = 17.7$ энтропийным единицам.

ЛИТЕРАТУРА

[1] R. Savage, D. Hudson, F. Spedding, J. Chem. Phys., 30, 221 (1959). — [2] Ан. Н. Несмеянов. Давление пара химических элементов. Изд. АН СССР (1961). — [3] Г. И. Новиков, О. Г. Поляченок, ЖНХ, 6, 1951 (1961). — [4] F. Spedding, J. Mc Keown, A. Daane, J. Phys. Chem., 64, 289 (1960).

Поступило в Редакцию 1 февраля 1963 г.

Ленинградский государственный университет

К ИССЛЕДОВАНИЮ ДИХЛОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

О. Г. Поляченок, Г. И. Новиков

С помощью термографического метода нами получены диаграммы плавкости систем $\mathrm{SmCl_3-Sm}$, $\mathrm{ScCl_3-Sc}$, $\mathrm{YCl_3-Y}$. В системе $\mathrm{SmCl_3-Sm}$ образуется устойчивый дихлорид SmCl₂ (т. пл. 859°) и промежуточное соединение SmCl₃ · 4SmCl₂, плавящееся с разложением. Реакция SmCl₃ с металлическим самарием является лучшим способом получения чистого SmCl2, a EuCl2 и YbCl2 легко получаются восстановлением трихлоридов металлическим цинком. Дихлорид ScCl₂ плавится с разложением (806°). Кроме того, в системе ScCl₃—Sc образуется промежуточное соединение 2ScCl₃ · ScCl₂, также плавящееся с разложением. Растворимость иттрия в YCl₃ составляет всего 2 мол. % при температуре эвтектики 716°. Результаты измерений давления насыщенного цара в системах LaCl3-La, PrCl₃-Pr, NdCl₃-Nd, YCl₃-Y, ScCl₃-Sc свидетельствуют об атомарном растворении лантана и иттрия и об образовании в расплаве двухвалентных ионов \Pr^{2+} , Nd^{2+} , Sc^{2+} . Для процесса диспропорционирования дихлорида на трихлорид и металл ΔH° равно 13 ккал./моль для $NdCl_2$ и 8 ккал./моль для $PrCl_2$, а ΔS° в обоих случаях равно 3 энтропийным единицам (при средней температуре опытов 1250°). По растворению металлического неодима, NdCl2 и NdCl3 в растворе HCl были определены стандартные энтальпии образования NdCl2 и NdCl3, равные, соответственно, —163.2 и —246.5 ккал./моль. Для твердых PrCl₂ и ScCl₂ из данных диаграмм плавкости и измерений давления насыщенного пара получены приближенные значения энтальпий образования: -163 и -145 ккал./моль.

Поступило в Редакцию 22 февраля 1963 г.