В спектре ядерного магнитного резонанса * этоксикетопа отсутствует сигнал этиленового протона и имеется одиночный сигнал метильного группы у карбонила. В ИК-спектре четырехзамещенная двойная связыварактеризуется частотой 1675 см⁻¹, карбонильная группа 1712 см На основании этих данных совершению очевидно, что этоксикетон является производным 1,2,3,4,5,6,7,8,9,12,13,14-додекагидрофенантрена (IV и V

С целью выяснения механизма каталитического действия эфиратифтористого бора в реакциях Дильса нами проведены конденсации изпрена и 2,3-диметилбутадиена-1,3 с а,β-непредельными кетонами: метивинилкетоном, этилпропенилкетоном, 1-пропионилциклопентеном-1 1-пропионилциклопентеном-1 в бензольном растворе в присутствии указанного катализатора. Реакции проходили при комнатной температура течение 1 часа, выход аддуктов достигал 50—75%. Очевидно, что каталитическое действие эфирата фтористого бора обусловлено образованием молекулярных соединений кислородсодержащих диенофилов с В Несомненный теоретический интерес представляет изучение структурного направленности низкотемпературного диенового синтеза.

ЛИТЕРАТУРА

[1] И. А. Фаворская, Л. В. Федорова, ЖОХ, 23, 47 (1953).— [2] И. А. Фаворская, Л. В. Федорова, ЖОХ, 24, 243 (1954).— [3] И. А. Фаворская, И. Н. Макарова, ЖОХ, 25, 1477 (1955).

Поступило в Редакцию 22 апреля 1963 г.

Ленинградский государственный университет

О ДАВЛЕНИИ НАСЫЩЕННОГО ПАРА МЕТАЛЛИЧЕСКОГО САМАРИЯ

О. Г. Поляченок, Г. И. Новиков

Металлический самарий обычно получается возгонкой металла. однако в литературе иет экспериментальных данных по давлений насыщенного пара самария. Сэвэдж, Гудсон и Спеддинг [1] опредлили масс-спектрометрически теплоту сублимации самария, равнура 48.7 ккал./г-ат. при средней температуре 538°. В работе [2] приводятся расчетные уравнения для процессов сублимации и испарения самария. Нами измерено давление насыщенного пара металлического самария (чистота не менее $99.5^{\circ}/_{\circ}$) в температурном интервале $1100-1350^{\circ}$. Давление определялось методом «точки кипеция» [3] в кварцевых ампулах, покрытых внутри плотным слоем молибдена. В указанном темпратурном интервале зависимость давления насыщенного пара (в мм рт. ст.) от температуры может быть представлена в виде уравнения $\log P = 7.30 - \frac{8300}{T}$, откуда теплота испарения самария равна 38 ± 1 ккал./г-атпри средней температуре опыта 1220° . Это значение теплоты испарения

^{*} За снятие спектра ЯМР приносим глубокую благодарность проф. А. А. Петрову.

хорошо согласуется (с учетом теплот плавления и фазового перехода, а также теплоемкости самария $[^4]$) с величиной, приведенной в цитированной выше статье $[^1]$. Используя для процесса испарения самария значение ΔC_p , равное 11 кал./г-ат. град (значение C_p для $\mathrm{Sm}_{\mathrm{жидк}}$ равно 14 кал./г-ат. град $[^4]$, для $\mathrm{Sm}_{\mathrm{ras}}$ равно 3 кал./г-ат. град), получаем справедливое в широком температурном интервале уравнение: $\log P = 27.32 - \frac{11910}{T} - 5.54 \lg T$. Из этого уравнения следует, что температура кипения самария равна 1624° , ΔH испарения при этой температуре равно 33.6 ккал./г-ат., а $\Delta S = 17.7$ энтропийным единицам.

ЛИТЕРАТУРА

[1] R. Savage, D. Hudson, F. Spedding, J. Chem. Phys., 30, 221 (1959). — [2] Ан. Н. Несмеянов. Давление пара химических элементов. Изд. АН СССР (1961). — [3] Г. И. Новиков, О. Г. Поляченок, ЖНХ, 6, 1951 (1961). — [4] F. Spedding, J. Mc Keown, A. Daane, J. Phys. Chem., 64, 289 (1960).

Поступило в Редакцию 1 февраля 1963 г. Ленинградский государственный университет

К ИССЛЕДОВАНИЮ ДИХЛОРИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

О. Г. Поляченок, Г. И. Новиков

С помощью термографического метода нами получены диаграммы плавкости систем SmCl₃-Sm, ScCl₃-Sc, YCl₃-Y. В системе SmCl₃-Sm образуется устойчивый дихлорид SmCl₂ (т. пл. 859°) и промежуточное соединение SmCl₃ · 4SmCl₂, плавящееся с разложением. Реакция SmCl₃ с металлическим самарием является лучшим способом получения чистого SmCl₂, a EuCl₂ и YbCl₂ легко получаются восстановлением трихлоридов металлическим цинком. Дихлорид ScCl₂ плавится с разложением (806°). Кроме того, в системе ScCl₃—Sc образуется промежуточное соединение 2ScCl₃ · ScCl₂, также плавящееся с разложением. Растворимость иттрия в YCl₃ составляет всего 2 мол. % при температуре эвтектики 716°. Результаты измерений давления насыщенного цара в системах LaCl₃-La, PrCl₃—Pr, NdCl₃—Nd, YCl₃—Y, ScCl₃—Sc свидетельствуют об атомарном растворении лантана и иттрия и об образовании в расплаве двухвалентных ионов Pr2+, Nd2+, Sc2+. Для процесса диспропорционирования дихлорида на трихлорид и металл ΔH° равно 13 ккал./моль для $\mathrm{NdCl_2}$ и 8 ккал./моль для $\mathrm{PrCl_2}$, а ΔS° в обоих случаях равно 3 энтропийным единицам (при средней температуре опытов 1250°). По растворению металлического неодима, NdCl₂ и NdCl₃ в растворе HCl были определены стандартные энтальпии образования NdCl2 и NdCl3, равные, соответственно, —163.2 и —246.5 ккал./моль. Для твердых PrCl, и ScCl, из данных диаграмм плавкости и измерений давления насыщенного пара получены приближенные значения энтальпий образования: -163 и -145 ккал./моль.

Поступило в Редакцию 22 февраля 1963 г.