1976 Tom XX № 3

УДК 539.193:546.786'13'21

И. М. ЖАРСКИЙ, Г. И. НОВИКОВ, Е. З. ЗАСОРИН, В. П. СПИРИДОНОВ

УТОЧНЕНИЕ СТРОЕНИЯ МОЛЕКУЛЫ ОКСИТЕТРАХЛОРИДА ВОЛЬФРАМА В ГАЗОВОЙ ФАЗЕ

(Представлено академиком АН БССР М. М. Павлюченко)

Первое электронографическое исследование строения молекулы WOCl4 в газовой фазе было выполнено нами в 1970 г. (1). При этом были определены величины межъядерных расстояний r (W=O) и r (W-Cl) -1,73 Å и 1,37 Å соответственно. Было установлено, что симметрия конфигурации молекулы принадлежит к типу C_{4v} — квадратная пирамида с атомами хлора в основании и кислорода в вершине (рисунок), что согласуется с предполагаемой на основании колебательных спектров конфигурацией молекулы WOCl4 (2). Почти одновременно с работой (1) Ииджима и Шибата (³) опубликовали предварительные результаты независимого электронографического исследования молекулы WOCl4, которое подробнее изложено в работе (4). При этом авторами (1, 3) было получено удовлетворительное согласование величин валентных углов в молекуле WOCl₄, но межъядерные расстояния r(W=O) и r(W-Cl), по данным (1) и (3), оказались существенно различными. С целью выяснения возможных причин такого рассогласования и уточнения структуры молекулы WOCl4 нами предпринято повторное электронографическое исследование этой молекулы с использованием более совершенных методик синтеза препарата, а также получения и обработки электронограмм.

Препарат окситетрахлорида вольфрама синтезирован по методике (⁵), специально разработанной для получения оксигалогенидов вольфрама. Электронограммы получены при ускоряющем напряжении 40 кв, расстояниях сопло ампулы — плоскость фотопластинки $L_1 \sim 404$ мм и $L_2 \sim 182$ мм и температурах вблизи сопла ампулы испарителя 95—100 °C. Нестабильность длины волны электронов в ходе эксперимента ($\sim 0,1$ %) контролировалась по электронограммам кристаллической ZnO. Каждая из 14 электронограмм фотометрировалась по нескольким радиусам и диаметрам. Наилучшие записи (8 и 6 для L_1 и L_2 соответственно) были выбраны для первичной обработки, в результате которой получено два отрезка молекулярной составляющей интенсивности рассеяния $sM^{I}(s)$ и $sM^{II}(s)$ на интервалах s=2,0-16,0 Å⁻¹ и s=4,6-33,2 Å⁻¹ для L_1 и L_2 соответственно. При этом линия фона $I_{\Phi}(s)$ на усредненной полной кривой интенсивности $I_n(s)$ определялась графически и использовалось состношение: $sM(s) = s[I_n(s)-I_{\Phi}(s)]/I_{\Phi}(s)$.

Структурные параметры молекулы WOCl₄ определены методом наименьших квадратов (МНК) по методике (⁶), реализованной на ЭВМ БЭСМ-4 Вычислительного центра МГУ. При расчете теоретической функции *sM*(*s*) использовались модули и фазы атомных амплитуд рассеяния из таблиц Кокса и Бонэма (⁷). На предварительной стадии структурного анализа минимизация производилась для каждой из кривых $sM^{I}(s)$ и $sM^{II}(s)$ в отдельности, которые были объединены в общую кривую на отрезке s=2,0-33,2 Å⁻¹ лишь после того, как было установлено, что величины структурных параметров, полученные на каждом отрезке sM(s), совпадают в пределах 0,01 Å. В соответствии с моделью молекулы WOCl₄ (рисунок) в качестве независимых параметров были выбраны межъядерные расстояния r(W=O) и r(W-Cl). Для ослабления влияния корреляции между параметрами сначала уточнялись величины межъядерных расстояний и лишь затем сред-

Теоретическая (сплошная линия), экспериментальная (нанесена точками) и разностная кривые f(r/smin, smax) для молекулы WOCl₄ (a=0,002)

неквадратичных амплитуд колебаний. В ходе структурного анализа были внесены некоторые изменения в первоначальную линию фона, которые не привели к заметным сдвигам в величинах основных структурных параметров, а лишь существенно уменьшили величину $Q_{\rm ворм}$ — корня квадратного из нормированной суммы квадратов отклонений экспериментальной и теоретической кривых sM(s) (от 0,320 до 0,134). Полученные значения молекулярных параметров сопоставлены с данными (⁴) в таблице. Полная ошибка определения межъядерных расстояний рассчитана по методике (⁸) с учетом величины систематической ошибки, оцениваемой нами как 0,2%. Ошибка в величинах амплитуд колебаний принята равной 2σ (σ — стандартное отклонение, полученное по МНК). Согласование экспериментальных данных с теоретическими иллюстрируется на примере функций $f(r/s_{min}, s_{max})$ (рисунок).

Таким образом, в результате повтерного исследования существенно уточнены величины межъядерных расстояний r(W=O) и r(W-Cl), полученные ранее (¹), а также определены все среднеквадратичные амплитуды колебаний, хорошо согласующиеся с данными работы (⁴). Некоторое расхождение в величинах l(W=O) и l(W-Cl), полученных в настоящей работе и авторами (⁴), хотя оно и не является значимым, если учесть указываемые в таблице погрешности измерений, тем не менее межет быть обусловлено различиями в факторах атомного рассеяния, использованных в работе (⁴) и содержащихся в таблицах (⁷). Такое рассогласование уже нередко отмечалось разными авторами (см., например, (⁹)). Что касается расхождения результатов нашего предыдущего (¹) и настояще-

Структурные параметры молекулы WOCl4 (в А) (тип симметрии С4v)

Тип параметра	Настоящая работа		Инджима, Шибата (4)	
	rg	lg	rg	lg
$\begin{split} W &= O \\ W &- Cl \\ O & \ldots & Cl \\ Cl_1 & \ldots & Cl_2 \\ Cl_1 & \ldots & Cl_3 \end{split}$	$\begin{array}{c} 1,680 \pm 0,011 \\ 2,278 \pm 0,005 \\ 3,092 \pm 0,023 \\ 3,160 \pm 0,024 \\ 4,465 \pm 0,034 \end{array}$	$\begin{array}{c} 0,041 \pm 0,008 \\ 0,047 \pm 0,003 \\ 0,102 \pm 0,034 \\ 0,122 \pm 0,017 \\ 0,119 \pm 0,029 \end{array}$	$\begin{array}{c} 1,686\pm0,011\\ 2,281\pm0,003\\ 3,120\pm0,026\\ 3,151\pm0,015\\ 4,452\pm0,021 \end{array}$	$\begin{array}{c} 0,045 \pm 0,011 \\ 0,052 \pm 0,004 \\ 0,095 \pm 0,038 \\ 0,122 \pm 0,028 \\ 0,118 \pm 0,020 \end{array}$
⇒OWCI ⇒CIWCI	101,7±1,6° 87,8±0,5°		102,4±1,3° 87,3±0,5°	

го исследований, то одной из его причин могла быть не выявленная нами ошибка в определении приборных параметров (масштабная ошибка). Другим источником может являться недостаточно строгий учет квазикинематического приближения. Так, для амплитуд рассеяшия в работе (¹) использовались борновские выражения, а для фаз — аппроксимация по Бонэму—Юкаджи (¹⁰).

Практическое совпадение результатов работы (⁴) и настоящего исследования свидетельствует, по нашему мнению, о высокой достоверности найденных структурных параметров молекулы WOCl₄.

Поступило 22.1 1975

Белорусский технологический институт им. С. М. Кирова, Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. П. Спиридонов, Е. З. Засорин, И. М. Жарский, Г. И. Новиков, Ж. структ. химин, 13, 511, 1972. ² I. R. Beattie, К. М. S. Livingston, D. J. Reynolds, G. A. Ozin, J. Chem. Soc. (London), A, 1210, 1970. ³ К. Iijima, S. Shibata, Chemistry Letters, 1033, 1972. ⁴ К. Iijima, S. Shibata, Bull. Chem. Soc. Japan, 47, 1393, 1974. ⁵ P. C. Crouch, G. W. A. Fowles, R. A. Walton, J. Inorg. Nucl. Chem., 32, 329, 1970. ⁶ М. Iwasaki, F. N. Fritsch, K. Hedberg, Acta Cryst., 17, 533, 1964. ⁷ H. L. Cox, Jr., R. A. Bonham, J. Chem. Phys., 47, 2599, 1967. ⁶ Y. Morino, T Iijima, Bull. Chem. Soc. Japan, 35, 1661, 1962. ⁹ B. Beagley, K. T. McAloon, Chem. Phys. Letters, 10, 78, 1971. ¹⁰ R. A. Bonham T. Ukaji, J. Chem. Phys., 36, 72, 1962.