ГЛАВА 5. ОСНОВЫ АНАЛИЗА ЭФФЕКТИВНОСТИ ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ. 5.1. Постановка вопроса.

Традиционная (рис.5.1) тепловая схема водогрейной котельной [59] предусматривает параллельную работу котлов на общую теплосеть. Одна и та же циркуляция воды в сети и отпуск теплоты могут обеспечиваться разным числом котлов, что позволяет оптимизировать режим работы котельной по распределению нагрузок между котлами.

При стационарном режиме работы котельной расходы и температуры воды в сети, от ТЭЦ [69] и через котлы, как правило, постоянны. Остальные показатели П_i любого котла и котельной в целом (температуры воды на входе и выходе из котла, потоки рециркуляции и др.) могут быть выражены как функции двух независимых переменных [70]:

$$\Pi_{i} = f_{i} (G_{\Pi 1 i}, G_{\Pi 2 i}), \qquad (5.1)$$

где $G_{\Pi li}$ и $G_{\Pi 2i}$ - массовые потоки обратной сетевой воды (в расчете на один I-ай котел) с температурой t_0 и после бойлеров ТЭЦ с температурой $t_{_{TЭЦ}}$, подмешиваемые в прямой трубопровод, минуя котлы.

Величина $G_{\Pi 2} = \sum_{i=1}^{k} G_{\Pi 2i}$, входящая в уравнения (5.1), характерна только для

случая работы котла в пиковом режиме. В базовом режиме величина потока $G_{\pi 2}$ не оказывает влияние на тепловой баланс теплосети, т. к. имеет ту же температуру $t_{T \ni II} = t_0$, равную температуре потока $G_{\pi 1i}$. Поэтому, в случае базового режима работы котельной, уравнение (5.1) теряет свои оптимизационные качества и обращается в однозначную функцию с одной переменной,

т.е. $\Pi_i = f_i(G_{\Pi 1i})$. Оптимизация режима работы котельной в этом случае сводится только решению задачи оптимального распределения нагрузок между котлами.

В пиковом режиме система уравнений (5.1) позволяет вычислять оптимальные значения потоков воды в пределах котельной и их температуры. Задача дополнительной оптимизации нагрузок в этом случае существенно усложняет решение основной – по оптимизации температур. Очевидно, что в связи с этим требуется разработка универсального метода решения этой задачи, пригодного как для пиковой, так и для базовой котельной.

Решение задач оптимизации режимов работы котельной основано, прежде всего, на унификации ее тепловой схемы. Это позволяет в широком масштабе осуществить актуальные тенденции к повышению её надежности и экономичности, включая котлы. В отношении последних, исходя из опыта эксплуатации, основные тенденции к повышению их эффективности можно сформулировать так:

1. Нагрузка котла должна быть как можно большей.

2. Температура уходящих газов должна быть как можно меньшей.

3. Температура воды на входе в котел должна быть как можно большей.

4. Разрыв между температурами воды в прямой магистрали и на выходе из котла должен быть как можно меньшим.

5.Минимальная температура труб конвективного пучка должна быть выше температуры точки росы на 5-7 °С.

Очевидно, что некоторые из приведенных принципов в какой-то мере противоречат друг другу. Именно это обстоятельство и учтено в основе оптимизации этих принципов путем введения ряда мероприятий режимного характера, а также путем усовершенствования конструкции котлов в целом.

5.2. Особенности температурных режимов работы поверхностей нагрева водогрейных котлов.

Известное отличие между процессами теплообмена в топке и газоходе котла в существенной мере влияет на степень охлаждения рабочих газов в этих зонах. В топке величина удельного теплового потока q_{τ} на лучевоспринимающие поверхности H_{Λ} экрана определяется в основном законами излучения и с помощью коэффициента пропорциональности χ её можно выразить так:

$$q_{\rm T} = \chi (T_a^4 - T_{c_{\rm P}}^4), \qquad (5.2)$$

где $T_a = t_a + 273$ и $T_{c,3} = t_{c,3} + 273$ – теоретическая температура горения и температура стенок экрана.

В газоходе котла аналогичная теплоотдача q_к определяется в основном конвекцией и её можно определить формулой Ньютона:

$$q_{\rm K} = \alpha_{\rm K} (t_{\rm \Gamma} - t_{\rm c\,\rm K}), \qquad (5.3)$$

где t_{Γ} и $t_{c\kappa}$ – температура рабочих газов и омываемой ими конвективной поверхности нагрева, т. е. наружной поверхности труб; α_{κ} – коэффициент теплообмена от газов к стенке.

На рис. 5.2 представлены результаты измерений, выполненные Белэнергоремналадкой * на котле №2 ПТВМ-100 Минской ТЭЦ-2. Термопары были установлены на трубах конвективного пучка в центре топки за исключением одного змеевика (кривая 10, рис. 5.2), расположенного на потолке. Кривые 2, 8 и 4, 7 характеризуют температурный режим стали одной экранной трубы и одного змеевика в конвективном пучке. Опыты выполнялись после очистки поверхностей нагрева снаружи и изнутри. При этом на внутренних стенках труб были остаточные отложения солей: в экранах 50-100 г/м², в змеевиках пучка – 10-15 г/м².

^{*}См.: «Отчёт по испытаниям котла ПТВМ-100 на подкислённой воде с определением температурного состояния поверхностей нагрева» Инв. №2117. Белэнергоремналадка, г.Минск, 1976г. Данные на рис 5.2 приведены на основании материалов этого отчёта с любезного согласия гл. инженера Белэнергоремналадки (Исх. №16/1722 от 22.06.89г.).

Рис. 5.2. Температура труб экранов и конвективного пучка со стороны топки в зависимости от уровня подогрева воды в котле ПТВМ-100, включённом по 2-х ходовой схеме циркуляции. 1, 2 и 3, 4 – температуры экранных труб и конвективного пучка снаружи; 5, 8, 9 и 6, 7, 10 – то же изнутри; 11, 12 – температура воды на выходе и входе в котёл.

Измерения, выполненные Белэнергоремналадкой, позволяют утверждать, что в нормальных условиях эксплуатации температура наружной стенки труб конвективного пучка, обращенных к топке, как правило, на 30-70 °C выше температуры протекающей в них среды. Теплообмен в трубах конвективного

пучка, кстати, также и в экранах топки, сопровождается кипением воды в пристеночном пограничном слое. Сделанные выводы подтверждаются также более поздними исследованиями ВТИ [71], выполненными на котлах ПТВМ-50 и ПТВМ-180.

С теоретической точки зрения процесс теплообмена в конвективных и экранных поверхностях нагрева котла во многом схож с аналогичными процессами теплообмена при нагревании потока жидкости в трубе набегающим потоком воздуха или газа, способного излучать тепловую энергию. Поэтому в целях более детального представления о количественных значениях показателей, характеризующих процессы теплообмена в поверхностях котла, рассмотрим аналогичный случай теплообмена при нагревании потока жидкости в трубе набегающим потоком газа.

Согласно закону Фурье перепады температур по сечению обогреваемой трубы с потоком рабочей жидкости запишем так:

$$\mathbf{t}_{\rm BH} - \mathbf{t}_{\rm W} = \mathbf{q}_{\rm I} \mathbf{R}_{\rm BH} , \qquad (5.4)$$

$$t_{\rm Hap} - t_{\rm BH} = q_1 R_1, \tag{5.5}$$

$$t_{\rm OK} - t_{\rm Hap} = q_1 R_{\rm OK} , \qquad (5.6)$$

где

$$R_{BH} = (\pi d_{BH} \alpha_{BH})^{-1} , \qquad (5.7)$$

$$R_{1} = (2\pi\lambda_{1})^{-1} \ln(d_{Hap}/d_{BH}), \qquad (5.8)$$

$$R_{oK} = (\pi d_{Hap} \alpha_{oK})^{-1},$$
 (5.9)

В формулах (5.4) – (5.9) d_{BH} , d_{Hap} – внутренний и наружный диаметры труб; t_{x} , t_{BH} , t_{Hap} , t_{OK} – температуры потенциального ядра жидкости, внутренней и наружной стенок трубы и окружающей среды; q_1 – линейная плотность стационарного теплового потока в радиальном направлении трубы; R_{BH} , R_{OK} – тепловые сопротивления пограничных слоёв с внутренней и наружной стенок трубы; R_1 – сопротивление стенки трубы: λ_1 – коэффициент теплопроводности стенки трубы; α_{BH} , α_{OK} – коэффициенты теплообмена с внутренней и наружной стенок трубы Стенок труб. В свою очередь λ_1 определяется линейной зависимостью [53] от температуры потока:

$$\lambda_{l} = \lambda_{l}^{0} \left(1 + \beta_{l} t_{\mathcal{K}} \right), \tag{5.10}$$

а коэффициенты теплообмена α_{вн}, α_{ок} вычисляются на основании зависимостей [53]:

$$Nu = \alpha_{BH} d_{BH} / \lambda_{\mathcal{K}} = 0.021 \text{Re}_{\mathcal{K}}^{0.8} \text{Pr}_{\mathcal{K}} / \text{Pr}_{c})^{0.25} , \qquad (5.11)$$
$$Re_{\mathcal{K}} = w_1 d_{BH} / v_{\mathcal{K}} , \qquad (5.12)$$

где согласно [69]

$$\alpha_{\rm OK} = 11,7 + 7 \,\mathrm{W}_{\rm BO3}^{0,5}. \tag{5.13}$$

На основании (5.11), вводя коэффициент динамической вязкости через посредство его виртуального значения, как $v_{\pi} = g \mu \rho_{\pi}^{-1}$, на основании (5.11), (5.12) определяем:

$$\alpha_{\rm BH} 0,021 d_{\rm BH}^{-0,2} [w_1 g^{-1} \mu_{\rm K}^{-1} \rho_{\rm K}]^{0.8} \lambda_{\rm K} \Pr_{\rm K}^{0,43} (\Pr_{\rm K}/\Pr_c)^{0,25} , \qquad (5.14)$$

где показатели $\mu_{\mathfrak{K}}(t_{\mathfrak{K}})$, $\lambda_{\mathfrak{K}}(t_{\mathfrak{K}})$, $Pr_{\mathfrak{K}}(t_{\mathfrak{K}})$, $Pr_{\mathfrak{c}}(t_{BH})$ вычисляются на основании аппроксимационных функций типа полиномов: $Y_i = A_6 X^6 + A_5 X^5 + A_4 X^4 + A_3 X^3 + A_2 X^2 + A_1 X + A_0$.

В результате совместного решения (5.4) – (5.6) получаем уравнение, позволяющее вычислить температуру внутренней стенки в зависимости от температуры потенциального потока жидкости t_ж:

$$t_{BH} = \frac{t_{OK} + t_{\mathcal{K}}(R_{1} + R_{OK})R_{BH}^{-1}}{1 + (R_{1} + R_{OK})R_{BH}^{-1}} .$$
(5.15)

Здесь следует заметить, что уравнение (5.15) не является явной функцией от аргумента t_ж. Это определяется входящей в него величиной $R_{BH}(t_{BH})$ через посредство зависимости $Pr_{c} = f(t_{BH})$, определяемой формулами (5.7) и (5.14). И только лишь в случае пренебрежения отношением $(\Pr_{\pi}/\Pr_{c})^{0,25}$, входящим в формулу (5.14), т. е. путём принятия комплекса $(\Pr_{w}/\Pr_{c})^{0,25} = 1$, уравнение (5.15) становится явной функцией от аргумента t_{π} . Ввиду того, что перепад температуры $\Delta t_{\pi/BH}$ по толщине пограничного слоя в трубе весьма не велик, применительно к данной задаче это пренебрежение сводится к $(Pr_{\star}/Pr_{c})^{0,25} = 1,003 \div 1,005 (Pr_{\star}/Pr_{c})^{0,25} \approx 1$, т. е. к не- существенному изменению коэффициента теплообмена $\alpha_{\rm BH}$, а следовательно и к не существенному влиянию на достоверность расчёта. Тем не менее при численном решении уравнения (5.15) пренебрегать комплексом (Pr_{κ} / Pr_{c})^{0,25} нет необходимости, определяя поиск не явной зависимости $t_{BH} = f(t_{\mathcal{K}})$ путём использования специальных функций в компьютере под наименованием «подбор параметра» или «поиск решения». Вычислив таким образом температуру t_{вн}, линейную плотность теплового потока q₁ определяем на основании формулы (5.4) так: $q_1 = (t_{BH} - t_{K}) R_{BH}^{-1}$. Далее вычисляется температура наружной стенки трубы [53]:

$$t_{\text{Hap}} = -\beta_1 + \left((\beta_1^{-1} + t_{\text{BH}})^2 - \frac{q_1 \ln (d_{\text{Hap}} / d_{\text{BH}})}{\pi \lambda_1^0 \beta_1} \right)^{0,5};$$
(5.16)

в случае $\beta_1 = 0$

$$t_{\text{Hap}} = t_{\text{BH}} - \frac{q_1 \ln (d_{\text{Hap}} / d_{\text{BH}})}{2\pi \lambda_1^0} .$$
 (5.17)

Рассмотрим аналогичную задачу при сложном теплообмене, когда наружная поверхность трубы наряду с конвекцией подвергается одновре- менному воздействию излучения со стороны окружающей среды. Механизм передачи теплоты от наружной стенки трубы к потенциальному потоку внутри неё остаётся прежним, как в случае только одной конвективной составляющей. Возрастает лишь линейная плотность суммарного $q_{\Sigma 1}$ теплового потока за счёт лучистого теплообмена, т. е.

$$q_{\Sigma 1} = q_1^{\kappa} + q_1^{\pi} , \qquad (5.18)$$

где q₁^к и q₁^л – линейные плотности тепловых потоков за счёт конвекции и излучения.

Согласно законам излучения показатель q^л выразим так:

$$q_{l}^{\pi} = q_{s}^{\pi} \pi d_{\text{Hap}} = \varepsilon_{\pi p} C_{o} \pi d_{\text{Hap}} 10^{8} (T_{o\kappa}^{4} - T_{\text{Hap}}^{4}), \qquad (5.19)$$

где q_s^{π} – плотность теплового потока на единицу поверхности наружной стенки трубы от излучения окружающей среды; ε_{np} – приведенная степень черноты рабочей среды и стенки трубы; применительно к топкам котлов $\varepsilon_{np} = 0,2 - 0,4$; $C_o = 5,768 \text{ Bt/}(\text{m}^2 \text{ }^{\circ}\text{K})$ – излучательная способность абсолютно чёрного тела; $T_{ok} = t_{ok} + 273$, $T_{hap} = t_{hap} + 273$.

Величину плотности теплового потока на единицу поверхности наружной стенки трубы определим по формуле Ньютона:

$$q_s^{\kappa} = q_l^{\kappa} (\pi d_{Hap})^{-1} = \alpha_{o\kappa} (t_{o\kappa} - t_{Hap}).$$
 (5.20)

На основании (5.16) – (5.18) получаем расчётную формулу по определению суммарного линейного теплового потока $q_{\Sigma 1}$, поступающего через стенку трубы:

$$q_{\Sigma 1} = [\alpha_{o\kappa}(t_{o\kappa} - t_{hap}) + \varepsilon_{\Pi p}C_0 10^8 (T_{o\kappa}^4 - T_{hap}^4)]\pi d_{hap} .$$
 (5.21)

Температура $T_{\text{нар}} = t_{\text{нар}} + 273$, входящая в уравнение (5.21), вычисляется по формулам (5.16), (5.17) при $q_1 = q_{\Sigma 1}$.

Из анализа формул (5.14) – (5.21) следует, что в случае сложного теплообмена уравнение (5.15) не может быть использовано в качестве поиска (путём «подбора параметра») температуры t_{BH} даже в случае принятия комплекса (\Pr_{π}/\Pr_{c})^{0,25} = 1. Это объясняется цепью последующих вычислений показателей R_{BH} , α_{BH} и $q_{\Sigma I} = (t_{BH} - t_{\pi})R_{BH}^{-1} = f(t_{Hap})$ по формулам (5.4), (5.14) и (5.18) – (5.21), приводящим к «циклической ссылке» в процессе поиска температуры t_{BH} . Поэтому в данном случае поиск температур t_{BH} и t_{Hap} необходимо выполнять на основании совместного решения системы уравнений: (5.15) и (5.16), имея в виду, что показатель $q_{\Sigma I}$ вычисляется по формуле (5.21). В случае пренебрежения комплексом (\Pr_{π}/\Pr_{c})^{0,25} в формуле (5.14), т. е. при (\Pr_{π}/\Pr_{c})^{0,25} =1, решение задачи существенно упрощается и сводится к поиску («подбору параметра») температуры t_{Hap} на основании одного уравнения (5.16) или (5.17).

На основании формул (5.2) – (5.21) разработан комплекс специальных программ расчётов (Файлы ТОВ1, ТОВ2, ТОВ3), позволяющих определять основные показатели процессов теплообмена при нагревании потока воды в трубе за счёт конвекции и излучения набегающего на неё поперечного потока

газа. Как уже отмечалось, подобие между процессами теплообмена, происходящими в такой трубе и в трубах конвективных поверхностях нагрева котла, позволяет исследовать надёжность режимов работы поверхностей нагрева котлов в условиях эксплуатации.

) KOIJIA III DI	M = 100. 1011,111,100 – Ma	isyı.					
05	Нагруз	ка в %	07	Нагрузк	ав%				
Ооозн.	100	40	Ооозн.	100	40				
Температура	газов и воді	ы в нижнем	пряду труб конве	ктивного пу	чка, т.е.				
r	груб, обогр	еваемых га	зами со стороны	топки.					
$t_{T} = t_{\Gamma}^{BX B K \Pi}$	1260	980	t _в ^{вых из кп}	t _в вых из кп 144,6 1					
Температура	а газов и во,	ды в верхні	их рядах труб кон	вективного	пучка,				
	т. е. т	груб в зоне	уходящих газов.						
$t_{\Gamma}^{B \text{ bix } \text{ is KII}} = t_{\text{yx}}$	230	126	t _в вх в кп	111	106				

Таблица 5.1. Данные из теплового расчёта конвективного пучка (схема Z) котда ПТВМ-100. Топливо – мазут

В порядке примера рассмотрим тепловой режим работы труб конвективного пучка в котле типа ПТВМ-100 в пиковом режиме. Значения основных температур по газам и воде согласно данным теплового расчёта в таком котле приведены в таблице 5.1. Как следует из данных, приведенных в этой табдице, согласно заводскому проекту движение потоков воды и газов в зоне конвективного пучка соответствует, так называемой противоточной (Z) схеме движения обоих теплоносителей, т.е. дымовые газы по газоходу движутся вверх, а вода по трубам конвективного пучка вниз.

Ниже в порядке примера (рис. 5.3, 5.4) даны выкопировки из рабочих листов файла ТОВЗ, в котором:

- по «Вар1» приведены исходные данные и результаты расчёта теплообмена в трубе, работающей в условиях, аналогичных трубам конвективного пучка котла ПТВМ-100, расположенных в первых рядах со стороны топки, т.е. в начальном сечении газохода с температурой газов t_г^{вх в кп} = 1260 °C:

- по «Вар2» – приведены аналогичные исходные данные и результаты расчёта теплообмена в трубе, работающей в условиях, аналогичных трубам конвективного пучка, расположенных в выходном сечении газохода с температурой $t_{\Gamma}^{Bbix\,u_3\kappa_n} = t_{vx} = 230^{\circ}$ C.

В случае противотока (рис.5.3Z, рис.5.3aZ, рис.5.3бZ) температура воды в трубах по «Вар1» (со стороны топки на выходе из конвективного пучка) $t_{B}^{B b X \, U 3 \, K \Pi} = 144,6^{\circ}$ C, а по «Вар2» (на входе в пучок в зоне уходящих газов) $t_{B}^{B X \, B \, K \Pi} = 111^{\circ}$ C.

В случае прямотока (рис.5.4П, рис.5.4Па, рис.5.4Пб) температура воды в трубах по «Вар1» (со стороны топки) $t_B^{BXBK\Pi} = 111^{\circ}C$, а по «Вар2» (на выходе из пучка в зоне уходящих газов) $t_B^{BbiX U3K\Pi} = 144,6^{\circ}C$.

На основании изложенного очевидно, что практический интерес представляют температурные режимы работы двух рядов труб конвективного

пучка котла: одного (самого верхнего), расположенного в газоходе на уровне сечения уходящих газов и обогреваемого ими в основном за счёт конвекции; второго (самого нижнего) - обогреваемого за счёт конвекции и излучения топочных газов. В данном случае интерес представляют локальные значения температур ($t_{\rm ж}$, $t_{\rm BH}$, $t_{\rm hap}$, $t_{\rm ok}$) и их перепады ($\Delta t_{\rm BH/{\it K}}$, $\Delta t_{\rm BH/{\it Hap}}$, $\Delta t_{\rm Hap/{\it K}}$, $\Delta t_{hap/ok}$, $\Delta t_{ok/w}$) по сечениям труб, расположенных в области со стороны топки котла (рис. 5.3Za) и уходящих газов (рис. 5.4Па). Как видно из результатов расчёта, в трубах, расположенных со стороны топки котла, эти показатели значительно выше. В отношении коррозионной безопасности к особым показателям следует отнести значения температур стенок труб, расположенных в зоне уходящих газов. Как уже отмечалось, в котлах традиционной конструкции (ПТВМ-50, ПТВМ-100 и др.), работающих в пиковом режиме по 2 – х ходовой схеме циркуляции, предусмотрена противоточная схема (Z) движения воды в пучке по отношению к потоку дымовых газов. В результате верхние ряды труб конвективного пучка контактируют с уходящими газами, охлаждаемыми сравнительно холодным потоком воды на выходе из боковых экранов котла (рис. 5.3Zб). Нижний ряд труб пакета конвективного пучка, в котором циркулирует вода, нагретая до почти рабочей температуры, наоборот подвержен тепловому воздействию топочной среды (рис. 5.3Za). В связи с этим имеются основания полагать, что верхние ряды труб конвективного пучка с потоком сравнительно холодной воды в зоне уходящих газов наиболее уязвимы со стороны низкотемпературной коррозии. Гидравлическая и тепловая разверки также способствуют локальным пере- и недогревам воды в отдельных змеевиках. Кроме того, в нижних рядах труб конвективного пучка, обогреваемых топочными газами, не исключается опасность образования солевых отложений.

При замене противоточного (Z) режима работы конвективного пучка на прямоточный ситуация может измениться. В нижние ряды труб конвективного пучка, обращенных в сторону топки, будет поступать сравнительно холодная вода из экранов, а в верхних рядах труб конвективного пучка будет циркулировать вода уже достаточно нагретая в нижних рядах. В результате следует ожидать, что температура стенки верхних змеевиков конвективного пучка возрастёт на величину Δt_c , а нижнего – со стороны топки уменьшится, примерно, на ту же величину. При этом суммарное тепловосприятие обоих пакетов конвективного пучка не изменится. Это подтверждается анализом данных теплового расчета того же котла ПТВМ-100 и основано на сравнительно малой величине соотношения водяных эквивалентов обоих теплоносителей. В частности, при 100% нагрузке котла: расход воды G_в = 2142 т/ч = 595 кг/с, расход мазута $B_p = 12,53$ т/ч = 3,48 кг/с, реальный объём дымовых газов V_г = 12,6 нм³/кг, плотность газов ρ_{Γ} = 1,32кг/нм³ и теплоёмкость C_г = 1,095 Дж/(с·К), теплоёмкость воды С_в = 4186,8 Дж/(с·К). Тогда водяные эквиваленты теплоносителей:

- со стороны газов

$W_{1r} \approx W_{2r} = W_r = G_r C_r = I$	$B_p V_{\Gamma} \rho_{\Gamma} C_{\Gamma} = 3,48 \cdot 12,6 \cdot 1,32$	$\cdot 1,095 = 63 \cdot 10^3$	Дж/(с∙К);
– со стороны воды			

 $W_{1B} \approx W_{2B} = W_B = G_B C_B = 595 \cdot 4186, 8 = 2480 \cdot 10^3 \ \text{Дж/(c-K)}.$

IOBS	Версия 1. Версия 2. Противотивоточная (Z) компоновка конвективного пучка										
Cox. Ba	ip.1 Boo	c. Bap.1	Темпе	ратурны	ій режи	м нагре	ва (q ₁ >	0) или (охлажде	ния (qı	< 0)
Cox. Ba	ip.2 Boo	c. Bap.2	потока	воды	в трубе	, обдува	аемой п	оперечн	ым пот	оком Г	A3A.
0,0	0,00	0,000	0,0000	0,00000	-	0,35	1,00100	Bap.1	вып	Стальн	н. тр-ба
0,0	0,00	0,000	0,0000	0,00000	۶пр	0,35	1,00100	Bap.2	вып	Сталы	н. тр-ба
От А ₁ =	30,00	30,00	35,56	41,11	46,67	52,22	57,78	63,33	68,89	74,44	80,00
до А ₂ =	80,00	Расч.	Bap.1	1.Coxp	анить	1.Гра	фики	1.Удал	1. нак.	1.Удал	. гр аф.
От А ₁ =	30,00	30,00	35,56	41,11	46,67	52,22	57,78	63,33	68,89	74,44	80,00
до А ₂ =	80,00	Расч.	Bap.2	2.Cox	ранить	2.Гра	фики	2.Удал	1. нак.	2.Удал	. гр аф.
П _і →	1	2	3	4	5	6	7	Стальн	. тр-ба	Полиэт	г. тр-ба
<u>П</u> і →	1	2	3	4	5	6	7	Стальн	. тр-ба	Полиэт	г. тр-ба
Обозн.	t _ж	W 1	d _{нар}	W _{B 0 3}	t _{ок}	λ° ₁	b ₁	d _{вн}	δавт	G	1
Bap. 1	144,6	1,46	28,0	7,0	1260,0	50,00	0,0005	23,6	2,19	0,59	2,11
Bap. 2	111,0	1,46	28,0	7,0	230,0	50,00	0,0005	23,6	2,19	0,60	2,17
Разм.	°C	м/с	мм	м/с	°C	Вт/(м*К)	1/ °C	ММ	мм	кг/с	т/ч
Обозн.	t _{вн}	t _{нар}	∆t _{вн/ж}	∆t _{вн/нар}	∆t _{hap/ж}	Δt _{oκ/ж}	q _{ΣI}	q ^ĸ ı	q ⁿ ı	q ^{₿H} s	q ^{Hap} s
Обозн. Вар. 1	t _{вн} 161,71	t _{нар} 168,024	∆t _{вн/ж} 17,1	∆t _{вн/нар} 6,32	∆t _{нар/ж} 23,4	∆t _{oκ/ж} 1115,4	q _{ΣI} 12634,6	q ^r ı 2893,2	q ⁿ ₁ 9741,4	q ^{вн} ₅ 170255	q ^{нар} s 143633
Обозн. Вар. 1 Вар. 2	t _{вн} 161,71 111,57	t _{нар} 168,024 111,773	∆t _{вн/ж} 17,1 0,6	∆t _{вн/нар} 6,32 0,20	∆t _{нар / ж} 23,4 0,8	∆t _{ок/ж} 1115,4 119,0	q _{ΣI} 12634,6 388,0	q ^ĸ ı 2893,2 313,24	q ⁷ 1 9741,4 74,76	q ^{вн} s 170255 5228	q ^{⊣ap} s 143633 4411
Обозн. Вар. 1 Вар. 2 Разм.	t _{вн} 161,71 111,57 °С	t _{нар} 168,024 111,773 °С	<u>∆t _{вн/ж}</u> 17,1 0,6 °С	<u>Δt</u> _{вн/нар} 6,32 0,20 °С	Δt _{нар / ж} 23,4 0,8 °C	Δt _{oκ/ж} 1115,4 119,0 °C	q _{ΣI} 12634,6 388,0 Вт / м	q ^к ı 2893,2 313,24 Вт / м	q ^л ı 9741,4 74,76 Вт / м	q ^{вн} s 170255 5228 Вт / м ²	q ^{нар} s 143633 4411 Вт / м ²
Обозн. Вар. 1 Вар. 2 Разм. Обозн.	t _{вн} 161,71 111,57 °С а _{вн}	t _{нар} 168,024 111,773 °C α _{οκ}	<u>Δt</u> _{вн/ж} 17,1 0,6 °С Q _{сп}	<u>Δt</u> _{вн/нар} 6,32 0,20 °С Р вод	<u>Δt _{нар / ж}</u> 23,4 0,8 °С R _{вп}	Δt _{oκ/ж} 1115,4 119,0 °C R ₁	q _{ΣI} 12634,6 388,0 Вт / м R ₀	q ^к ı 2893,2 313,24 Вт / м R тп	q ^л 9741,4 74,76 Вт / м г _{вп}	q ^{вн} s 170255 5228 Вт / м ² г ₁	q ^{нар} s 143633 4411 Вт / м ² г _о
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1	t _{вн} 161,71 111,57 °С а _{вн} 9952,9	t _{Hap} 168,024 111,773 °C α _{οκ} 30,1	<u>∆t</u> _{вн/ж} 17,1 0,6 °С Q _{сп} 354,8	<u>Δt</u> _{вн/нар} 6,32 0,20 °С Р вод 916,0	Δt _{нар / ж} 23,4 0,8 °C R _{вп} 0,0014	Δt _{oκ/ж} 1115,4 119,0 °C R ₁ 0,0005	q _{ΣI} 12634,6 388,0 Βτ / Μ R ₀ 0,3774	q ^к 1 2893,2 313,24 Вт / м R _{тп} 0,3793	q ^л I 9741,4 74,76 Вт / м г _{вп} 0,0036	q ^{вн} s 170255 5228 Вт / м ² r ₁ 0,0013	q ^{нар} s 143633 4411 Вт / м ² г₀ 0,9951
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2	t _{вн} 161,71 111,57 °С а _{вн} 9952,9 9100,9	t _{нар} 168,024 111,773 °С а _{ок} 30,1 30,1	<u>Аt</u> вн/ж 17,1 0,6 °С Q _{сп} 354,8 280,7	<u>Аt</u> _{вн/нар} 6,32 0,20 °С Р вод 916,0 944,1	Δt _{нар / ж} 23,4 0,8 °C R _{вп} 0,0014 0,0015	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005	Ч∑I 12634,6 388,0 Вт / м R ₀ 0,3774 0,3774	q ^к ₁ 2893,2 313,24 Вт / м R _{тп} 0,3793 0,3794	q ^л 9741,4 74,76 Вт / м г _{вп} 0,0036 0,0039	q ^{вн} s 170255 5228 Вт / м ² г ₁ 0,0013 0,0014	q ^{нар} s 143633 4411 Вт / м ² г₀ 0,9951 0,9947
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм.	t _{вн} 161,71 111,57 °С а _{вн} 9952,9 9100,9 Вт/(м ² К)	t _{Hap} 168,024 111,773 °C α _{oκ} 30,1 30,1 BT/(M ² K)	<u>Δt</u> вн/ж 17,1 0,6 °C Q _{сп} 354,8 280,7 кВт	<u>Δt</u> _{вн/нар} 6,32 0,20 °C Р вод 916,0 944,1 Кг / м ³	<u>Δt _{нар}/ж</u> 23,4 0,8 °C R _{вп} 0,0014 0,0015 м*К / Вт	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / BT	9 _Σ 12634,6 388,0 Bτ / M R ₀ 0,3774 0,3774 M*K / Bτ	q ^к ı 2893,2 313,24 Вт / м R _{тп} 0,3793 0,3794 м*К / Вт	q ^л 9741,4 74,76 Вт / м г _{вп} 0,0036 0,0039 -	q ^{вн} s 170255 5228 Вт / м ² г ₁ 0,0013 0,0014 -	q ^{нар} s 143633 4411 Вт / м ² 0,9951 0,9947 -
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн.	t _{вн} 161,71 111,57 °С а _{вн} 9952,9 9100,9 Вт/(м ² К) t ^{''} _{нар}	t _{Hap} 168,024 111,773 °C α _{οκ} 30,1 30,1 Βτ/(μ ² K) Ρ1 _c	Δt _{вн/ж} 17,1 0,6 °C Q _{cπ} 354,8 280,7 κΒτ t' _{нар}	<u>Δt</u> _{вн/нар} 6,32 0,20 °C 916,0 944,1 кг / м ³ δ _p	Δt _{нар / ж} 23,4 0,8 °C R _{вп} 0,0014 0,0015 M*K / Βτ λ _ж (t _ж)	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / Bτ μ _x (t _x)	q _{Σ1} 12634,6 388,0 BT / M R ₀ 0,3774 0,3774 M*K / BT v _* (t _*)	q ^κ ₁ 2893,2 313,24 BT / M R _{τπ} 0,3793 0,3793 0,3794 M*K / BT Re _x (t _x)	q ⁿ ₁ 9741,4 74,76 Βτ / Μ r _{вп} 0,0036 0,0039 - Nu _ж (t _x)	q ^{вн} s 170255 5228 Вт / м ² r ₁ 0,0013 0,0014 - Pr _ж (t _ж)	q ^{нар} s 143633 4411 Вт / м ² г₀ 0,9951 0,9947 - Рг _ж (t _{вн})
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1	t _{вн} 161,71 111,57 °C α _{вн} 9952,9 9100,9 Вт/(м ² К) t ^{''} _{нар} 144,74	t _{Hap} 168,024 111,773 °C α _{οκ} 30,1 30,1 BT/(M ² K) P1 _c 168,02	Δt _{BH/ж} 17,1 0,6 °C Q _{cn} 354,8 280,7 κΒτ t' _{Hap} 168,02	<u>Δt</u> вн/нар 6,32 0,20 °C Р вод 916,0 944,1 кг / M ³ δ _p -4E-08	Δt _{нар / ж} 23,4 0,8 °C R _{вп} 0,0014 0,0015 M*K / BT λ _ж (t _ж) 0,592	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / BT μ _x (t _x) 2E-05	q _{Σ1} 12634,6 388,0 Bt / M R ₀ 0,3774 0,3774 M*K / Bt v _x (t _x) 2E-07	q ^к i 2893,2 313,24 Вт / м R _{тп} 0,3793 0,3794 м*К / Вт Re _ж (t _ж) 2E+05	q ⁿ ₁ 9741,4 74,76 Βτ / Μ r _{вп} 0,0036 0,0039 - Nu _* (t _*) 4E+02	q ^{вн} s 170255 5228 Вт / м ² г ₁ 0,0013 0,0014 - Pr _ж (t _ж) 1,148	q ^{нар} s 143633 4411 Вт / м² r₀ 0,9951 0,9947 - Pr _ж (t вн) 1,279
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 1 Вар. 1	t _{вн} 161,71 111,57 °C α _{вн} 9952,9 9100,9 Вт/(м ² К) t'' _{нар} 144,74 111,11	t _{нар} 168,024 111,773 °C а _{ок} 30,1 30,1 Вт/(м ² К) Р1 _с 168,02 111,77	Δt _{вн/ж} 17,1 0,6 °C Q _{cπ} 354,8 280,7 κΒτ t' _{Hap} 168,02 111,77	Δt _{BH/Hap} 6,32 0,20 °C 916,0 944,1 Kr / M ³ δ _p -4E-08 -1E-05	<u>Δt _{нар / ж}</u> 23,4 0,8 °C <u>R_{вп}</u> 0,0014 0,0015 M*K / Вт λ _ж (t _ж) 0,592 0,589	Δt or / ** 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / Βτ μ *(t *) 2E-05 3E-05	q _{Σ1} 12634,6 388,0 BT / M R _o 0,3774 0,3774 M*K / BT V _* (t _*) 2E-07 3E-07	q ^κ ₁ 2893,2 313,24 BT / M R _{τπ} 0,3793 0,3794 M*K / BT Re _* (t _*) 2E+05 1E+05	q ⁿ ₁ 9741,4 74,76 Βτ / Μ r _{вп} 0,0036 0,0039 - Nu _* (t _*) 4E+02 4E+02	q ^{вн} s 170255 5228 Вт / м ² г ₁ 0,0013 0,0014 - Рг _ж (t _*) 1,148 1,557	q ^{нар} s 143633 4411 Вт / м ² 0,9951 0,9947 - Рг _ж (t вн) 1,279 1,549
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм.	t _{вн} 161,71 111,57 °C α _{вн} 9952,9 9100,9 Вт/(M ² K) t'' _{нар} 144,74 111,11 °C	t _{Hap} 168,024 111,773 °C α _{oκ} 30,1 30,1 BT/(M ² K) P1 _c 168,02 111,77 °C	Δt _{BH/ж} 17,1 0,6 °C Q _{cn} 354,8 280,7 κBT t' _{Hap} 168,02 111,77 °C	<u>Δt</u> вн/нар 6,32 0,20 °C 916,0 944,1 кг / м ³ δ _р -4E-08 -1E-05 %	<u>Δt _{нар / ж}</u> 23,4 0,8 °C R _{вп} 0,0014 0,0015 M*K / Вт λ _ж (t _ж) 0,592 0,589 кк/(м*ч*К)	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / BT μ _* (t _*) 2E-05 3E-05 Krc*c/M ²	q _Σ 12634,6 388,0 BT / M R ₀ 0,3774 0,37777 0,37777 0,37777 0,377777 0,37777777777	q ^к i 2893,2 313,24 Вт / м R _{тп} 0,3793 0,3794 м*К / Вт Re _ж (t _ж) 2E+05 1E+05 -	q ⁿ 9741,4 74,76 Βτ / Μ r _{вп} 0,0036 0,0039 - Nu _* (t _*) 4E+02 4E+02 -	q ^{вн} s 170255 5228 BT / M ² r ₁ 0,0013 0,0014 - Pr _* (t _*) 1,148 1,557 -	q ^{нар} s 143633 4411 Вт / м² r₀ 0,9951 0,9947 - Pr _ж (t вн) 1,279 1,549 -
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн.	t _{вн} 161,71 111,57 °C α _{вн} 9952,9 9100,9 Вт/(м ² К) t'' _{нар} 144,74 111,11 °C δ _{с1}	t _{Hap} 168,024 111,773 °C α _{oκ} 30,1 30,1 BT/(M ² K) P1 _c 168,02 111,77 °C = A ₄ *d ⁴	Δt вн/ж 17,1 0,6 °C Q _{cπ} 354,8 280,7 KBT t' _{Hap} 168,02 111,77 °C + A ₃ *d ³	Δt _{BH/Hap} 6,32 0,20 °C 916,0 944,1 κг / м ³ δ _p -4E-08 -1E-05 % + A 2*d ²	<u>Δt нар / ж</u> 23,4 0,8 °C R _{вп} 0,0014 0,0015 M*K / Вт λ _ж (t _ж) 0,592 0,589 кк/(м*ч*К) + A 1 [*] d +	Δt or /* 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / BT μ * (t *) 2E-05 3E-05 κrc*c/M ² · A ₀	q _{∑1} 12634,6 388,0 BT / M R ₀ 0,3774 0,3776 0,376	q ^K 1 2893,2 313,24 Вт / м R _{тп} 0,3793 0,3794 м*К / Вт Re _* (t _*) 2E+05 1E+05 1E+05 - А ₃	q ⁿ 1 9741,4 74,76 BT / M r _{вп} 0,0036 0,0039 - Nu _* (t _*) 4E+02 4E+02 4E+02 - A 2	q ^{вн} s 170255 5228 BT / M ² r ₁ 0,0013 0,0014 - Pr _* (t _*) 1,148 1,557 - A 1	q ^{нар} s 143633 4411 Вт / м² r₀ 0,9951 0,9947 - Pr _ж (t вн) 1,279 1,549 - A₀
Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1 Вар. 2 Разм. Обозн. Вар. 1	t _{вн} 161,71 111,57 °C α _{вн} 9952,9 9100,9 Вт/(м ² К) t'' _{нар} 144,74 111,11 °C δ _{ст} Стальн	t _{нар} 168,024 111,773 °C а _{ок} 30,1 30,1 Вт/(м ² К) Р1 _с 168,02 111,77 °C . = А ₄ *d ⁴ 4. тр-ба	<u> </u>	Δt _{вн/нар} 6,32 0,20 °C 916,0 944,1 κг / м ³ δ _p -4E-08 -1E-05 % + A ₂ *d ² ная тр-б	Δt _{нар / ж} 23,4 0,8 °C R _{вп} 0,0014 0,0015 M*K / BT λ _x (t _x) 0,592 0,589 κκ/(м*ч*К) + A ₁ *d + a, δ _{ct} = 1	Δt _{ox/ж} 1115,4 119,0 °C R ₁ 0,0005 0,0005 M*K / BT μ _* (t _*) 2E-05 3E-05 Krc*c/M ² A ₀ (d _{HcT})	q _Σ 12634,6 388,0 BT / M R ₀ 0,3774 0,3774 M*K / BT V _* (t _*) 2E-07 3E-07 M ² /c A ₄ 3E-11	q ^κ 1 2893,2 313,24 BT / M R _{τπ} 0,3793 0,3794 0,379 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,3794 0,379 0,3794 0,379	q ⁿ 1 9741,4 74,76 Bτ / M r _{вп} 0,0036 0,0039 - Nu _* (t _*) 4E+02 4E+02 4E+02 - A 2 -3E-05	q ^{вн} s 170255 5228 Вт / м ² 7 ₁ 0,0013 0,0014 - Pr _* (t _*) 1,148 1,557 - А 1 0,028	q ^{нар} s 143633 4411 BT / M ² r₀ 0,9951 0,9947 - Pr _* (t вн) 1,279 1,549 - A₀ 1,4272

Вари-	$\delta_{c\tau} = A_4 d^4$	+ $A_3 * d^3$ + $A_2 * d^2$ + $A_1 * d$ + A_0	Α4	Α ₃	Α 2	A 1	Α 0	
анты	Стальн. тр-ба	Стальная тр-ба, δ _{ст} = f (d _{нст})	3E-11	-2E-08	-3E-05	0,028	1,4272	
расч.	Полиэт. тр-ба	Полиэт. тр-ба, δ _{пэ} = f (d _{нст})	1E-11	-4E-08	5E-05	-0,0023	2,2327	
	$D_{12} = 5.27$ $\Delta u_{12} = 1.5$ $TOD2 (u_{12} = 5.27 = 5)$							

Рис. 5.32. Фрагмент из файла ТОВЗ (к рис. 5.3Za,б).

Тот факт, что соотношение $W_{1r} / W_{1B} \approx W_{2r} / W_{2B} = W_r / W_B = 63*10^3 / (2480*10^3) = 0,0254 < 0,05$ свидетельствует об однозначности [53], т. е. о постоянстве тепловосприятия конвективного пучка, работающего как в режиме противотока (Z) так и в режиме прямотока (П). Из этого следует, что с точки зрения процессов теплообмена перевод работы конвективного пучка с противоточной схемы на прямоточную не приведёт к ухудшению экономичности котла. При этом вероятность увеличения коррозионной стойкости поверхностей нагрева имеет тенденцию к возрастанию.

Рис. 5.3Za. Теплотехнические показатели конвективного пучка котла ПТВМ-100 со стороны топки при противоточном движении теплоносителей.

Следует заметить, что в порядке эксперимента [72] питание котла ПТВМ-100, организованное со стороны выходных коллекторов вопреки традиционной схеме, предусмотренной проектом, практически не оказало влияния на выходные параметры теплоносителя. Очевидно, что в этом случае конвективный пучок «заработал» в прямоточном режиме. К сожалению, серьёзных наблюдений [72] в этом случае не было сделано и уникальный эксперимент оказался бесплодным. Однако, с помощью программного файла ТОВЗ оказалось возможным в определённой мере «повторить» выполненный опыт [72], но только с помощью математической модели на компьютере.

Рис. 5.3Zб. Теплотехнические показатели конвективного пучка котла ПТВМ-100 в сечении уходящих газов при противоточном движении теплоносителей.

Ниже в свете изложенного дана фрагмент из того же файла ТОВЗ (рис. 5.4П) с прямоточным (П) движением теплоносителей, т. е. газов и воды в конвективном пучке. На рис. рис. 5.4Па и рис. 5.4Пб приведены соответствующие результаты расчётов, аналогичных тем, которые даны на рис. 5.3Z, рис. 5.3Za и рис. 5.Zб выше.

Данные, приведенные в фрагментх из файла ТОПЗ (по сх. Z, и сх. П), на рис. 5.3Z, рис. 5.3Za, рис. 5.3Zb, рис. 5.4П, рис. 5.4Пa, рис. 5.4Пb и в таблицах 5.1, 5.2 выполнены на основании исходных данных из теплового расчёта котла ПТВМ-100, а именно: $W_{BO3} = W_{\Gamma a3OB}$, $w_1 = w_{BOдbi}$, $t_{\mathcal{K}} = t_{BOdbi}$

Версия 1. Версия 2. Прямоточная (П) компоновка конвективного пучка										
ap.1 Boo	c. Bap.1	Темпе	ратурны	ій режи	м нагре	ва (q ₁ >	0) или (охлажде	ния (qı	< 0)
ap.2 Boo	c. Bap.2	потока	воды	в трубе	, обдува	аемой п	оперечн	ым пот	оком Г	A3A.
0,00	0,000	0,0000	0,00000	- ⁻	0,35	1,00100	Bap.1	вып	Сталы	н. тр-ба
0,00	0,000	0,0000	0,00000	е пр	0,35	1,00100	Bap.2	вып	Сталы	н. тр-ба
30,00	30,00	35,56	41,11	46,67	52,22	57,78	63,33	68,89	74,44	80,00
80,00	Расч.	Bap.1	1.Coxp	анить	1.Гра	фики	1.Удал	1. нак.	1.Удал	. граф.
30,00	30,00	35,56	41,11	46,67	52,22	57,78	63,33	68,89	74,44	80,00
80,00	Расч.	Bap.2	2.Cox	ранить	2.Гра	фики	2.Удал	1. нак.	2.Удал	. граф.
1	2	3	4	5	6	7	Стальн	. тр-ба	Полиэт	г. тр-ба
1	2	3	4	5	6	7	Стальн	. тр-ба	Полиэт	г. тр-ба
t _ж	W ₁	d _{нар}	W _{B03}	t _{ok}	λ° ₁	b ₁	d _{вн}	δ ^{авт} ст	G	1
111,0	1,46	28,0	7,0	1260,0	50,00	0,0005	23,6	2,19	0,60	2,17
144,6	1,46	28,0	7,0	230,0	50,00	0,0005	23,6	2,19	0,59	2,11
°C	м/с	мм	м/с	°C	Вт/(м*К)	1/ °C	мм	ММ	кг/с	т/ч
t _{вн}	t _{нар}	∆t _{вн/ж}	∆t _{вн/нар}	∆t _{нар / ж}	Δt _{oκ/ж}	q _{ΣI}	٩۴	q″ı	q ^{₿H} s	q ^{нар} s
129,86	136,321	18,9	6,46	25,3	1149,0	12735,9	2977,2	9758,7	171620	144785
144,98	145,128	0,4	0,14	0,5	85,4	284,3	224,87	59,40	3831	3232
°C	°C	°C	°C	°C	°C	Вт / м	Вт / м	Вт / м	Вт / м ²	Вт / м ²
α _{вн}	α _{οκ}	Q _{сп}	ρвод	R _{en}	R₁	R。	R _{TΠ}	r _{вп}	r ₁	ro
9100,9	30,1	280,7	944,1	0,0015	0,0005	0,3774	0,3794	0,0039	0,0013	0,9948
9952,9	30,1	354,8	916,0	0,0014	0,0005	0,3774	0,3793	0,0036	0,0013	0,9951
Вт/(м ² К)	Вт/(м ² К)	кВт	кг / м ³	м*К / Вт	м*К / Вт	м*К / Вт	м*К / Вт	-	-	-
t'' _{нар}	P1 _c	ť' _{нар}	δ _p	λ _* (t _*)	μ _ж (t _ж)	v _* (t _*)	Re _* (t _*)	Nu _* (t _*)	Pr _# (t _*)	Рг _ж (t _{вн})
111,11	136,32	136,32	-4E-06	0,589	3E-05	3E-07	1E+05	4E+02	1,557	1,308
144,74	145,13	145,13	-1E-05	0,592	2E-05	2E-07	2E+05	4E+02	1,148	1,145
°C	°C	°C	%	кк/(м*ч*К)	кгс*с/м ²	м²/с	-	-	-	-
δ _{ст}	$= A_4 * d^4$	+ A ₃ *d ³	+ A 2*d ²	+ A ₁ *d +	A ₀	Α4	Α ₃	Α ₂	Α 1	Α₀
Стальн	н. тр-ба	Сталы	ная тр-б	а, ठ _{ст} = f	(d _{нст})	3E-11	-2E-08	-3E-05	0,028	1,4272
Сталы	н. тр-ба	Сталы	ная тр-б	а, ठ _{ст} = f	(d _{нст})	3E-11	-2E-08	-3E-05	0,028	1,4272
	Версия пр.1 Вос 0,00 0,00 30,00 80,00 30,00 80,00 1 1 1 1 1 1 144,6 °C 129,86 144,98 °C 444,98 °C 9100,9 9952,9 BT/(M²K) 111,11 144,74 °C ठ ст Сталы Сталы Сталы	Версия 1. Вар. ир.1 Вос. Вар.1 ир.2 Вос. Вар.2 0.00 0.000 30,00 30,00 80,00 Расч. 30,00 30,00 80,00 Расч. 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 36,321 144,98 145,128 °C °C 4 4 9100,9 30,1 9952,9 30,1 9952,9 30,1 BT/(M ² K) BT/(M ² K) t'' Hap P1c <t< td=""><td>Версия 1. Версия 2. пр.1 Вос. Вар.1 Темпе потока потока 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 30,00 30,00 35,56 80,00 Pacч. Bap.1 30,00 30,00 35,56 80,00 Pacч. Bap.2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1,46 28,0 °C M / c MM 144,6 1,46 28,0 144,98 145,128 0,4 °C °C °C °C 9100,9 30,1 280,7 9952,9</td></t<> <td>Версия 1.Версия 2.Пр:ир.1Вос. Вар.1Температурны потока водыир.2Вос. Вар.2Потока воды0.000.0000.00000.00000.00000.000.0000.00000.00000.00000.000.0000.00000.00000.000030,0030,0035,5641,1180,00Расч. Вар.11.Сохр30,0030,0035,5641,1180,00Расч. Вар.22.Сохр123412341234123412341234123412341234123412341234123411,4628,07,0144,61,4628,07,0129,86136,32118,96,46144,98145,1280,40,14°C°C°C°Cα_{0K}Qcrnρ_{B04}9100,930,1280,7944,19952,930,1354,8916,0BT/(M²K)KBTKг / M³t'mapP1ct'map111,11136,32136,32</td> <td>Версия 1.Версия 2.Прямоточнипотока воды в трубе0.000.0000.00000.00000.0000\mathcal{E} пр0.000.0000.00000.00000.0000\mathcal{E} пр30,0030,0035,5641,1146,6780,00Pacч.Bap.11.Coxранить30,0030,0035,5641,1146,6780,00Pacч.Bap.22.Coxранить123451234512345123451234512345123451234512345123451234512345123451234512345123451234512345123451114628,07,01260,0144,61,4628,07,0230,0°C°C°C°C°C°C°C°C°C</td> <td>Версия 1.Версия 2.Прямоточная (П) нир.1Вос. Вар.1Температурный режим нагрения 1.ир.2Вос. Вар.2Температурный режим нагрения 1.0.000.0000.00000.0000\mathcal{E} пр0.350.000.0000.00000.0000\mathcal{E} пр0.3530,0030,0035,5641,1146,6752,2280,00Расч. Вар.22.Сохранить1.Гра30,0030,0035,5641,1146,6752,2280,00Расч. Вар.22.Сохранить2.Гра1234561234561234561234561234561234561234561234561234561234561234561234561234561234561234561114670230,0144,61,4628,07,0230,050,00<</td> <td>Версия 1.Версия 2.Прямоточная (П) компонопрамоточная (П) компонопотока воды в трубе, обдуваемой п0,000,0000,0000,0000,0000,0000,0000,0000,0351,001000,0000,0000,0351,001000,0000,0000,0351,001000,0000,0000,0351,0010030,00122.Coxpaнить2.Графики1230,0030,0030,0030,0010,0030,0030,0030,0030,00144,61,4M144,6<th< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конр.1Вос. Вар.1Температурный режим нагрева (q₁ > 0) или спотока воды в трубе, обдуваемой поперечн0.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.0030,0035,5641,1146,6752,2257,7863,3380,00Расч. Вар.22.Сохранить2.Графики2.Удал1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн12345567Стальн12345567Стальн1<th< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективния (П) компоновка конвективния (П)P.2Вос. Вар.1Температурный режим нагрева (q1 > 0) или охлажде потока воды в трубе, обдуваемой поперечным потовов (q1 > 0)0.000.0000.00000.00000.00000.00000.00100.00100.0010Bap.1BbIП0.000.0000.00000.0000\mathcal{E} пр0.351.00100Bap.1BbIП30,0030,0035,5641,1146,6752,2257,7863,3368,8980,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1234567Стальн. тр-ба1234567Стальн. тр-ба12<t< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективного пуч ир.1Вос. Вар.1 р.2Температурный режим нагрева (q1 > 0) или охлаждения (q1 потока воды в трубе, обдуваемой поперечным потоком Г.0.000.00000.00000.0000C_{PP}0,351.00100Bap.1BbIПСтальн О.0000.0000.00000.00000E_{PP}0,351.00100Bap.2BbIПСтальн О.00030,0030,0035,5641,1146,6752,2257,7863,3368,8974,4480,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1.Удал.1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234<t< td=""></t<></td></t<></td></th<></td></th<></td>	Версия 1. Версия 2. пр.1 Вос. Вар.1 Темпе потока потока 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 30,00 30,00 35,56 80,00 Pacч. Bap.1 30,00 30,00 35,56 80,00 Pacч. Bap.2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1,46 28,0 °C M / c MM 144,6 1,46 28,0 144,98 145,128 0,4 °C °C °C °C 9100,9 30,1 280,7 9952,9	Версия 1.Версия 2.Пр:ир.1Вос. Вар.1Температурны потока водыир.2Вос. Вар.2Потока воды0.000.0000.00000.00000.00000.000.0000.00000.00000.00000.000.0000.00000.00000.000030,0030,0035,5641,1180,00Расч. Вар.11.Сохр30,0030,0035,5641,1180,00Расч. Вар.22.Сохр123412341234123412341234123412341234123412341234123411,4628,07,0144,61,4628,07,0129,86136,32118,96,46144,98145,1280,40,14°C°C°C°C α_{0K} Qcrn ρ_{B04} 9100,930,1280,7944,19952,930,1354,8916,0BT/(M²K)KBTKг / M³t'mapP1ct'map111,11136,32136,32	Версия 1.Версия 2.Прямоточнипотока воды в трубе0.000.0000.00000.00000.0000 \mathcal{E} пр0.000.0000.00000.00000.0000 \mathcal{E} пр30,0030,0035,5641,1146,6780,00Pacч.Bap.11.Coxранить30,0030,0035,5641,1146,6780,00Pacч.Bap.22.Coxранить123451234512345123451234512345123451234512345123451234512345123451234512345123451234512345123451114628,07,01260,0144,61,4628,07,0230,0°C°C°C°C°C°C°C°C°C	Версия 1.Версия 2.Прямоточная (П) нир.1Вос. Вар.1Температурный режим нагрения 1.ир.2Вос. Вар.2Температурный режим нагрения 1.0.000.0000.00000.0000 \mathcal{E} пр0.350.000.0000.00000.0000 \mathcal{E} пр0.3530,0030,0035,5641,1146,6752,2280,00Расч. Вар.22.Сохранить1.Гра30,0030,0035,5641,1146,6752,2280,00Расч. Вар.22.Сохранить2.Гра1234561234561234561234561234561234561234561234561234561234561234561234561234561234561234561114670230,0144,61,4628,07,0230,050,00<	Версия 1.Версия 2.Прямоточная (П) компонопрамоточная (П) компонопотока воды в трубе, обдуваемой п0,000,0000,0000,0000,0000,0000,0000,0000,0351,001000,0000,0000,0351,001000,0000,0000,0351,001000,0000,0000,0351,0010030,00122.Coxpaнить2.Графики1230,0030,0030,0030,0010,0030,0030,0030,0030,00144,61,4M144,6 <th< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конр.1Вос. Вар.1Температурный режим нагрева (q₁ > 0) или спотока воды в трубе, обдуваемой поперечн0.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.000.0000.0000\mathcal{E} пр0.351.00100Вар.10.0030,0035,5641,1146,6752,2257,7863,3380,00Расч. Вар.22.Сохранить2.Графики2.Удал1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн12345567Стальн12345567Стальн1<th< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективния (П) компоновка конвективния (П)P.2Вос. Вар.1Температурный режим нагрева (q1 > 0) или охлажде потока воды в трубе, обдуваемой поперечным потовов (q1 > 0)0.000.0000.00000.00000.00000.00000.00100.00100.0010Bap.1BbIП0.000.0000.00000.0000\mathcal{E} пр0.351.00100Bap.1BbIП30,0030,0035,5641,1146,6752,2257,7863,3368,8980,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1234567Стальн. тр-ба1234567Стальн. тр-ба12<t< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективного пуч ир.1Вос. Вар.1 р.2Температурный режим нагрева (q1 > 0) или охлаждения (q1 потока воды в трубе, обдуваемой поперечным потоком Г.0.000.00000.00000.0000C_{PP}0,351.00100Bap.1BbIПСтальн О.0000.0000.00000.00000E_{PP}0,351.00100Bap.2BbIПСтальн О.00030,0030,0035,5641,1146,6752,2257,7863,3368,8974,4480,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1.Удал.1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234<t< td=""></t<></td></t<></td></th<></td></th<>	Версия 1.Версия 2.Прямоточная (П) компоновка конр.1Вос. Вар.1Температурный режим нагрева (q ₁ > 0) или спотока воды в трубе, обдуваемой поперечн0.000.0000.0000 \mathcal{E} пр0.351.00100Вар.10.000.0000.0000 \mathcal{E} пр0.351.00100Вар.10.000.0000.0000 \mathcal{E} пр0.351.00100Вар.10.0030,0035,5641,1146,6752,2257,7863,3380,00Расч. Вар.22.Сохранить2.Графики2.Удал1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн1234567Стальн12345567Стальн12345567Стальн1 <th< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективния (П) компоновка конвективния (П)P.2Вос. Вар.1Температурный режим нагрева (q1 > 0) или охлажде потока воды в трубе, обдуваемой поперечным потовов (q1 > 0)0.000.0000.00000.00000.00000.00000.00100.00100.0010Bap.1BbIП0.000.0000.00000.0000\mathcal{E} пр0.351.00100Bap.1BbIП30,0030,0035,5641,1146,6752,2257,7863,3368,8980,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1234567Стальн. тр-ба1234567Стальн. тр-ба12<t< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективного пуч ир.1Вос. Вар.1 р.2Температурный режим нагрева (q1 > 0) или охлаждения (q1 потока воды в трубе, обдуваемой поперечным потоком Г.0.000.00000.00000.0000C_{PP}0,351.00100Bap.1BbIПСтальн О.0000.0000.00000.00000E_{PP}0,351.00100Bap.2BbIПСтальн О.00030,0030,0035,5641,1146,6752,2257,7863,3368,8974,4480,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1.Удал.1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234<t< td=""></t<></td></t<></td></th<>	Версия 1.Версия 2.Прямоточная (П) компоновка конвективния (П) компоновка конвективния (П)P.2Вос. Вар.1Температурный режим нагрева (q1 > 0) или охлажде потока воды в трубе, обдуваемой поперечным потовов (q1 > 0)0.000.0000.00000.00000.00000.00000.00100.00100.0010Bap.1BbIП0.000.0000.00000.0000 \mathcal{E} пр0.351.00100Bap.1BbIП30,0030,0035,5641,1146,6752,2257,7863,3368,8980,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1234567Стальн. тр-ба1234567Стальн. тр-ба12 <t< td=""><td>Версия 1.Версия 2.Прямоточная (П) компоновка конвективного пуч ир.1Вос. Вар.1 р.2Температурный режим нагрева (q1 > 0) или охлаждения (q1 потока воды в трубе, обдуваемой поперечным потоком Г.0.000.00000.00000.0000C_{PP}0,351.00100Bap.1BbIПСтальн О.0000.0000.00000.00000E_{PP}0,351.00100Bap.2BbIПСтальн О.00030,0030,0035,5641,1146,6752,2257,7863,3368,8974,4480,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1.Удал.1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234<t< td=""></t<></td></t<>	Версия 1.Версия 2.Прямоточная (П) компоновка конвективного пуч ир.1Вос. Вар.1 р.2Температурный режим нагрева (q1 > 0) или охлаждения (q1 потока воды в трубе, обдуваемой поперечным потоком Г.0.000.00000.00000.0000 C_{PP} 0,351.00100Bap.1BbIПСтальн О.0000.0000.00000.00000 E_{PP} 0,351.00100Bap.2BbIПСтальн О.00030,0030,0035,5641,1146,6752,2257,7863,3368,8974,4480,00Расч. Вар.22.Сохранить1.Графики1.Удал. нак.1.Удал.1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234567Стальн. тр-баПолиз1234 <t< td=""></t<>

Вари-	δ _{cτ} = A ₄ *d ⁴	+ A ₃ *d ³ + A ₂ *d ² + A ₁ *d + A ₀	Α4	Α ₃	A 2	Α 1	Α₀
анты	Стальн. тр-ба	Стальная тр-ба, δ _{ст} = f (d _{нст})	3E-11	-2E-08	-3E-05	0,028	1,4272
расч.	Полиэт. тр-ба	Полиэт. тр-ба, δ _{пэ} = f (d _{нст})	1E-11	-4E-08	5E-05	-0,0023	2,2327
	D 4			5 4			

Рис. 5.4П. Фрагмент из файла ТОВЗ (к рис. 5.4Па,б)

и $t_{oK} = t_{yx raзoB}$ или $t_{oK} = t_{TOTKU}$ при $\varepsilon_{\Pi p} = 0.35$, работающего на мазуте в пиковом режиме при нагрузке 100%. Температура воды на входе в котёл (после деаэратора) 104°C и на выходе 150°C. Удельная теплопроводность стали труб принята $\lambda_1^0 = 50$ Bt/(м² K), диаметр труб – 28х3 мм. Здесь же на рис. 5.3Za, 5.3Zб и рис. 5.4Па, 5.4Пб приведены данные ряда других теплофизических показателей по сечению обогреваемой трубы: расчётные значения плотностей тепловых потоков ($q_{\Sigma 1}$, q_1^K , q_1^{Π} , q_8^{BH} , q_8^{Hap}); коэффициенты теплопередачи (k_1) между потоком воды и окружающей средой; плотности ($\rho_{BOД}$), удельные коэффициенты теплопроводности ($\lambda_{K}(t_{K})$) и кинематические коэффициенты вязкости ($v_{K}(t_{K})$) воды; критерии Nu(t_{K}), Re(t_{K}), Pr(t_{BH}), и относительные ($r_{BH} = R_{BH}/R_{T\Pi}$, $r_0 = R_0/R_{T\Pi}$ по отношению к суммарному значению $R_{T\Pi} = R_{BH} + R_1 + R_0$) тепловые сопротив-

Рис. 5.4Па. Теплотехнические показатели конвективного пучка котла ПТВМ-100 со стороны топки при прямоточном движении теплоносителей.

ления потоку теплоты через стенки труб. Основные результаты расчётов, представляющих практический интерес и выполненные на основании файла ПОВЗ, сведены в таблицу 5.2. Приведенные в ней данные подтверждают высказанное выше предположение о том, что в результате перевода режима работы конвективного пучка котла с противоточной схемы Z на прямоточную П температурный уровень стали труб в коррозионноопасной зоне уходящих газов возрастёт, а со стороны топки, т. е. в зоне высоких температур газов, снизится.

Следует отметить, что выявленная особенность температурных режимов работы конвективного пучка относится также к котлам типа КВГМ и

Рис. 5.4Пб. Теплотехнические показатели конвективного пучка котла ПТВМ-100 в сечении уходящих газов при прямоточном движении теплоносителей.

др., где соотношения водяных эквивалентов обоих теплоносителей (дымовых газов и воды) $W_r/W_B \le 0,025$. Этот факт следует учитывать при разра-ботках по повышению коррозионной стойкости конвективных пучков в котлах аналогичных конструкций.

Практический интерес представляют также результаты расчёта и анализа температурных режимов стенки и теплопотерь в дымовой трубе, охлаждаемой наружным воздухом. Фрагмент из соответстивующего программного файла ДыТр1 дана на рис. 5.5.

	Со сторон	ы топки.	В зоне уход	цящих газов.
Обори	Нагр.	100%	Нагр.	. 100%
0003н.	Рис. 5.3Za	Рис. 5.4Па	Рис. 5.3Zб	Рис. 5.4Пб
<u>t_ж</u>	Cx. Z	Сх. П	Cx. Z	Сх. П
t _ж	144,60	111,00	111,00	144,60
t _{в н}	161,71	129,86	111,57	144,98
t _{нар}	168,02	136,32	111,77	145,13
t _{o ĸ}	1260,0	1260,0	230,00	230,00
$\Delta t_{\rm BH/m}$	17,11	18,86	0,57	0,38
$\Delta t_{\scriptscriptstyle m BH/Hap}$	6,32	6,46	0,20	0,14
$\Delta t_{\text{hap/} \pi}$	23,42	25,32	0,77	0,53
$\Delta t_{\rm hap/ok}$	1092,0	1123,7	118,23	84,87
$\Delta t_{oK/M}$	1115,4	1149,0	119,00	85,40

Таблица 5.2. Рзультаты расчёта показателей конвективного пучка.

Из опыта эксплуатации водогрейных котлов известно, что снижение температурного уровня воды в котле на 1°С приводит к соответствующему снижению температуры уходящих газов, примерно, на ту же величину [73]. Здесь, как уже отмечалось, сказывается известное отличие между процессами теплообмена в топке и газоходе котла. В частности, изменение температуры воды $t_{\rm ж}$, циркулирующей в экранах топки, практически не влияет на изменение температуры топочных газов $t_{\rm T}$ на выходе из нее, т. е. $\partial t_{\rm T} / \partial t_{\rm ж} \approx 0.01$ – 0.015. В то же время изменение температуры воды $t_{\rm w}$, циркулирующей в конвективных поверхностях нагрева, приводит к изменению температуры уходящих газов $t_{\rm yx}$ практически на ту же величину, т. е. $\partial t_{\rm yx} / \partial t_{\rm w} \approx 0,99 - 1.04$.

Общие закономерности, характеризующие изменения температурного уровня воды в трубах конвективного пучка и экранов топки на температуру газов определим на основании анализа изменения средних теплоёмкостей газов С. В частности, имеем в виду, что в исследуемом интервале температур t теплоёмкость газов определяется линейной зависимостью C = A + Bt. Следовательно, энтальпия их выражается так:

$$\mathbf{i} = \mathbf{C}\mathbf{t} = \mathbf{t}(\mathbf{A} + \mathbf{b}\mathbf{t}). \tag{5.22}$$

Соответственно

$$t = -0.5A B^{-1} + [0.25 A^2 B^{-2} + i B^{-1}]^{0.5}.$$
 (5.23)

Следует обратить внимание на тот факт, что показатель і представляет собой тепловой потенциал рабочего газа на единицу его массы. В пересчёте на единицу массы сожжённого топлива с учётом (5.22) он преобразуется к виду:

$$\mathbf{I} = \mathbf{i} \rho_{\Gamma}^{0} \mathbf{V}_{\Gamma} = \rho_{\Gamma}^{0} \mathbf{V}_{\Gamma} \mathbf{t} (\mathbf{A} + \mathbf{b} \mathbf{t}), \qquad (5.24)$$

ЛОВИЯХ ЛыТр1	то при сторании топлива. Эдеев следует иметь в виду, что при выпол- То 1 Анапиз теппопотерь через поверхность Разр. д.т.н. Байрашевский Б.А.										
дым	овой тр	убы. ра	азмешён	ной на	открыт	ом воз	лухе.	Τ1. V	1СХОДНІ	ЫЕ ДАН	ные
Обозн.	d ten	d 1µn	d 2pg	d our	d 3n	V ⁰ -	Q ^p	n _{on}	απτ	tar	λ°1π
Расч. 1	0,193	0,200	0,380	0,419	0,450	10.9	9200	0.93	1.3	300,00	53,00
Расч. 2	2,000	2,200	2,380	2,420	2,450	10,9	9200	0,93	1,3	150,00	53,00
Разм.	м	М	М	М	м	нм ³ /кг	ккал/кг	-	-	°C	Вт/(м*К)
CoMo1	Т1. ИС)	одные	ДАННЫ	ыЕ (про	одолжен	ие).	BoMo1	Буф.Гр	аф. Уд	.Нак. У	д.Буф.
Обозн.	λ° _{12π}	λ° _{2π}	λ° _{3π}	W _{B 0 3}	b _{1п}	b _{12п}	b _{2п}	b _{3п}	Q	ĸ	ρ ^ο π
Расч. 1	0,3000	0,0900	50,00	8,000	0,0002	0,0002	0,0002	0,0002	1,0	1,2	1,293
Расч. 2	0,3000	0,0900	50,00	8,000	0,0002	0,0002	0,0002	0,0002	1,0	1,2	1,31
Разм.	Вт/(м*К)	Вт/(м*К)	Вт/(м*К)	м/с	1/ °C	1/ °C	1/ °C	1/ °C	Гкал/ч	МВт	кг/нм ³
CoMo2	T2. PE3	зультат	ГЫ РАС	ЧЁТА		вып	BoMo2	Сохра	анить	Расч.	вар. 1
Обозн.	r _{R02}	r _{H20}	ε _c	t o	٤' c	(k _r r _n)	$_{T} = k_{r}^{T}$	S _{τp}	P1 _c	ť _{1вп}	$\delta_{\rm p}$
Расч. 1	0,130	0,110	0,6	5,00	0,8	0,843	0,843	0,1834	286,0	286,0	-4E-07
Расч. 2	0,130	0,110	0,6	5,00	0,8	0,266	0,266	1,9	109,7	109,7	2E-07
Разм.	-	-	-	°C	-	1/(м*к	гс/см ²)	м	°C	°C	%
CoMo3	T2. PE3	зультат	ГЫ РАС	ЧЁТА (прод. 1	вып	ВоМо3			Расч.	вар. 2
Обозн.	ε _r	ρдг	α ^κ _{1вп}	α ^л _{1вп}	α _{1вп}	q₅ ^{лвн}	q ^ĸ i⊓	q ⁿ in	q ⊥⊓	a。	t _{1вп}
Расч. 1	0,143	0,6160	58,99	4,74	63,73	66	499,3	40,1	539,39	31,399	286,04
Расч. 2	0,397	0,8455	0,78	4,75	5,53	191	198,31	1201,5	1399,8	31,399	109,72
Разм.	-	кг/м ³	Вт/(м ² *К)	Вт/(м ² *К)	Вт/(м ² *К)	Вт / м ²	Вт / м	Вт / м	Вт / м	Вт/(м ² *К)	°C
Обозн.	t _{1нп}	t _{2вп}	t _{2нп}	t _{3п}	W _{dr}	R _{вп}	R _{1n}	R _{12п}	R 2п	R _{3n}	R。
Расч. 1	285,99	109,30	17,27	17,2	33,01	0,0259	0,0001	0,3276	0,1706	0,0002	0,0225
Расч. 2	109,32	51,85	10,85	10,8	0,23	0,0288	0,0003	0,0411	0,0293	0,0000	0,0041
Разм.	°C	°C	°C	°C	м/с	м*К / Вт	м*К / Вт	м*К / Вт	м*К / Вт	м*К / Вт	м*К / Вт
Обозн.	R _n	R эи	λ _{эи}	k _{Iэ} =R⁻¹ _⊓	G	дг	λ ^{cp} 1π	λ ^{cp} _{12π}	λ ^{cp} 2π	λ ^{cp} 3π	r _{вп}
Расч. 1	0,5469	0,4985	0,2703	1,8284	0,595	2141	56,032	0,312	0,091	50,172	0,047
Расч. 2	0,1036	0,0707	0,4570	9,6539	0,603	2170	54,161	0,305	0,091	50,108	0,278
Разм.	м*К / Вт	м*К / Вт	Вт/(м*К)	Вт/(м*К)	кг/с	кг/ч	Вт/(м*К)	Вт/(м*К)	Вт/(м*К)	Вт/(м*К)	-
Обозн.	r _{1n}	r _{12п}	г _{2п}	r _{3п}	r _o	Pr _ж (t ^{ср} п)	Рr _c (t' _{1вп})	λ _n (t ^{cp} n)	ν _п (t ^{cp} η)	Re _ж (t ^{ср} п)	t' _{1вп1,2}
Расч. 1	0,000	0,5989	0,312	0,0004	0,041	0,652	0,655	0,042	4E-05	1E+05	300,0
Расч. 2	0,003	0,3964	0,283	0,000	0,040	0,688	0,700	0,031	3E-05	2E+04	150,0
Разм.	-	-	-	-	-		-	к/(м*ч*К	м²/с	-	°C
	T3. PE3	зультат	гы кон	ТРОЛЬН	ЫХ РА	СЧЕТОВ					
Обозн.	R ^к вп	α _{1вп}	q ^ĸ i⊓	q″I⊓	q 1 π	π	g	К _р			
Расч. 1	0,0280	63,73	499,3	40,1	539,39	3,1416	9,81	1,163			
Расч. 2	0,2031	5,53	198,3	1201,5	1399,8	3,1416	9,81	1,163			

где	ρ^o_{Γ}	и V _г –	плотность	и объём	реальных	дымовых	газов в	нормальных	yc-
	av			11DO 3 TC					

 Разм.
 м*К / Вт / вт/м²*К)
 Вт / м
 Вт / м
 Вт / м
 м / с²
 Вт/ккал

 Рис. 5.5. Фрагмент из файла ДыТр1.

нении теплофизических расчётов котла показатель I обычно называют энэнтальпией (теплосодержанием) продуктов сгорания на один кг (нм³) сгоревшего топлива. С учётом изложенного рассмотрим баланс между процессами тепловыделения и тепловосприятия в топке котла:

$$B_{p}(I_{a} - I_{T}) = q_{T} H_{\pi}, \qquad (5.25)$$

где I_a и I_T – тепловыделение в топке и энтальпия газов на её выходе; q_T – плотность теплового потока на единицу лучевоспринимающей поверхности H_{π} в топке котла.

С другой стороны в соответствии с законами излучения величина q_T определяется по формуле (5.2). Тогда на основании (5.23) при температуре газов и их энтальпии на выходе из топки $t = t_T$ и $I = I_T$ с учётом (5.25), (5.2) определяем:

$$t_{\rm T} = \frac{A}{2B} + \left(\frac{A^2}{4B^2} + \frac{I_a B_p - \chi H_{\pi} (T_a^4 - T_{c\,\mathfrak{P}}^4)}{B_p \rho_{\Gamma}^o V_{\Gamma} B}\right)^{0,5}, \qquad (5.26)$$

где $T_a = t_a + 273$ – теоретическая температура горения в топке; $T_{c\,9} = t_{c\,9} + 273$ – наружная температура экранных труб.

На основании (5.26) с учётом (5.25), (5.2) получаем частную производную:

$$\frac{\partial t_{\rm T}}{\partial t_{\rm c9}} = \left(t_{\rm T} + \frac{A}{2B}\right)^{-1} \frac{2T_{\rm c9}^3 (I_{\rm a} - I_{\rm T})}{\rho_{\rm \Gamma}^0 V_{\rm \Gamma} B (T_{\rm a}^4 - T_{\rm c9}^4)} .$$
(5.27)

Применительно к конвективному пучку в газоходе котла средняя плотность теплового потока q_{T} определяется формулой (5.2), а среднюю температуру газов выразим так:

$$t_{\Gamma} \approx 0.5(t_{T} - t_{VX}),$$
 (5.28)

где t_{ух} – температура уходящих газов за конвективным пучком.

Далее, аналогичным образом используя уравнение теплового баланса конвективного пучка,

$$B_{p}(I_{T} - I_{yx}) = q_{K} H_{K} , \qquad (5.29)$$

при $t = t_{yx}$ и $I = I_{yx}$ с учётом (3.3), (3.28), (3.29) определяем:

$$t_{yx} = \frac{A}{2B} + \left(\frac{A^2}{4B^2} + \frac{I_T B_p - \alpha_{\kappa} [0,5(t_T + t_{yx}) - t_{c\kappa}] H_{\pi}}{B_p \rho_{\Gamma}^o V_{\Gamma} B}\right)^{0,5}.$$
 (5.30)

На основании (5.30) с учётом (5.3), (5.28), (5.29) определяем частную производную:

$$\frac{\partial t_{yx}}{\partial t_{c\kappa}} = \left\{ 0.5 + \left(t_{yx} + \frac{A}{2B} \right) \frac{\rho_{\Gamma}^{0} V_{\Gamma} B(t_{T} + t_{yx} - 2t_{c\kappa})}{I_{T} - I_{yx}} \right\}^{-1}.$$
 (5.31)

По данным измерений и рекомендациям в нормах теплового расчёта котла [51] следует, что наружная температура стенки экранных труб

 $t_{c_{\Im}} \approx t_{\#} + 50$ °C, а труб конвективного пучка – $t_{c_{K}} \approx t_{\#} + 4,5$ °C. Соответственно $\partial t_{c_{\Im}} \approx \partial t_{\#}$ и $\partial t_{c_{K}} \approx \partial t_{\#}$. Тогда, принимая во внимание уравнение (5.24), частные производные (5.27) и (5.21) выразим как функции от изменения температур t_{a} , t_{T} , $t_{c_{\Im}}$ и t_{T} , $t_{v_{X}}$, $t_{c_{K}}$ так:

$$\frac{\partial t_{T}}{\partial t_{\mathcal{K}}} = \frac{4(t_{c\,\mathfrak{I}} + 273)^{3}(t_{a} - t_{T})[\,\mathsf{B}(t_{a} + t_{T}) + A]}{(2\mathsf{B}t_{T} + A)[(t_{a} + 273)^{4} - (t_{c\,\mathfrak{I}} + 273)^{4}]} \,. \tag{5.32}$$

$$\frac{\partial t_{yx}}{\partial t_{\mathcal{K}}} = \left\{ 0,5 + \frac{(2Bt_{yx} + A)(t_{T} + t_{yx} - 2t_{c\kappa})}{2(t_{T} - t_{yx})[B(t_{T} + t_{yx}) + A]} \right\}^{-1}.$$
 (5.33)

Для газов среднего состава в диапазоне t = $100 - 2200^{\circ}$ C коэффициенты аппроксимации теплоёмкости A = 1,07 кДж/(кг °K) и Б = 1,12·10⁻⁴ кДж/(кг °K²). В порядке примера принимаем: в топке котла t_{c э} = 220° C, t_a = 1980° C, t_t = 1400° C; в конвективном пучке t_{c к} = 150° C, t_{yx} = 200° C, t_t = 1400° C. Подставляя значения этих показателей в формулы (5.32) и (5.33) получаем: $\partial t_{r} / \partial t_{w} = 0,01132$; $\partial t_{yx} / \partial t_{w} = 1,01689$.

ВЫВОДЫ И РЕКОМЕНДАЦИИ.

Высокая теплопроводность стальных труб в газоходах водогрейных котлов способствует тому, что температура их наружной несущественно отличается от температуры протекающей в ней воды. Во избежание коррозии поверхностей нагрева этот факт следует учитывать при проектировании конвективных пучков на участках газохода с пониженной температурой газов. Как показали исследования, основным «рычагом», позволяющим избежать коррозионноопасную ситуацию в сечениях газохода, является организация прямоточного (по сх. П) движения теплоносителей относительно друг друга. При этом следует учитывать благоприятно низкое соотношение между водяными эквивалентами обоих теплоносителей (газ/вода) равное, порядка 0,02 – 0,03, способствующее равнозначности суммарной теплоотдачи в конвективных поверхностях нагрева, как при противотоке (Z), так и при прямотоке (П). Кроме того, следует принимать во внимание последствия отличительных особенностей процессов теплообмена в топке и конвективном пучке. В частности, изменение температуры воды в экранах топки практически не влияет на температуру уходящих из неё газов. В отличие от этого, изменение температуры воды в конвективном пучке приводит к такому же по величине изменению температуры уходящих газов.

1. Разработана методика расчёта температур газов на выходе из топки и в газоходе котла из учёта их энтальпии и расхода сожжённого топлива.

2. На основании материалов исследования разработаны программные файлы (TOB1, 2, 3, ДыТр1 и др.), позволяющие выполнять численные исследования процессов теплообмена в трубе (а также применительно к трубам конвективных пучков в котлах), охлаждаемой или обогреваемой потоком воздуха или газов.

5.3. Анализ распределения разнотемпературных потоков воды в пределах котельной.

Экономичность работы водогрейной котельной зависит в основном от трех факторов, которые могут быть оптимизированы вмешательством персонала: распределения нагрузок Q_i между i-ми котлами, температур воды $t_{\kappa 2i}$ на выходе из котлов и загрузки G_{pi} насосов рециркуляции. Связь между этими факторами (при прочих равных условиях) представим в виде функции

$$f_1(Q_i^{\text{OHT}}, t_{\kappa 2i}^{\text{OHT}}, G_{pi}^{\text{OHT}}) = 0.$$
 (5.34)

Вопрос оптимального распределения нагрузок Q_i между котлами (применительно к блокам ТЭС) изучался в Западном отделении ВТИ (ныне Бел-ТЭИ) [74]. Основные материалы этих исследований изложены в ряде отчетов института. Разработана специальная программа, позволяющая решать эту задачу на ЭВМ. В качестве исходных данных используется целый перечень фактических и нормативных параметров котлов. В конечном итоге решение задачи сводится к выявлению оптимальных нагрузок между котлами при заданных фактических (до установки оптимального режима) температурах питательной воды на входе.

Применительно к водогрейным котлам эта программа требует введения существенных корректировок, т.к. она не учитывает ряд характерных особенностей этих котлов. В частности известно, что температура воды на выходе из котла при одной и той же нагрузке может быть разной. При этом выдерживается одно условие: сохраняется перепад температур воды на участке от входа до выхода из котла. Эта особенность работы водогрейного котла позволяет существенно влиять на величину КПД брутто его и не учитывать ее – это значит не использовать дальнейшие возможности оптимизации режима работы котельной.

Таким образом, решение задачи оптимизации по программе ВТИ (Бел-ТЭИ) применительно к водогрейным котлам позволяет установить следующую взаимосвязь:

$$f_2(Q_i^{\text{опт}}, t_{\kappa 2i}) = 0,$$
 (5.35)

в которой, в отличие от функции (5.34) температура воды t_{к2i} на выходе из котла не является оптимальной.

Анализ принципиальной схемы котельной (рис. 5.1) показывает, что при любой нагрузке Q_i и, в частности, при $Q_i = Q_i^{\text{опт}}$ имеют место также оптимальные значения и таких показателей, как G_{pi} и $t_{\kappa 2i}$. Решение такой задачи по отысканию указанного оптимума сводится к определению функции

$$f_3(Q_i, t_{\kappa 2i}^{OIIT}, G_{pi}^{OIIT}) = 0.$$
 (5.36)

Таким образом, очевидно, что связь между тремя оптимальными факторами $Q_i^{\text{опт}}$, $t_{\kappa 2i}^{\text{опт}}$, $G_{pi}^{\text{опт}}$, т.е. функцию (5.34) можно получить путем решения

двух оптимизационных задач в комплексе, т.е. на основании совместного решения уравнения (5.35) и (5.36).

Рассмотрим вопрос оптимизации двух факторов т.е. $t_{\kappa2i}^{\text{опт}}$ и $G_{pi}^{\text{опт}}$ при Q_i = const в соответствии с функцией (5.36), руководствуясь принципиальной схемой котельной, показанной на рис. 5.1. Из анализа ее следует, что оптимальным является тот режим работы котельной, при котором разрыв между температурами воды на выходе из котла $t_{\kappa2i}$ и в сети t_c , а также загрузка насоса рециркуляции G_{pi} (в расчете на один котел) оказываются как можно меньшими или вовсе равны нулю. Причем, режим работы, при котором загрузка насосов рециркуляции равна нулю, т.е. $G_{pi} = 0$, является предпочтительным.

Расход воды G_{ci} в сети и через бойлера ТЭЦ $G_{_{TЭЦi}}$ в расчете на один іый котел определим так:

$$G_{T_{3}} = G_{c_{i}} G_{T_{3}} G_{c_{i}}^{-1},$$

$$G_{c_{i}} = Q_{i} C^{-1} [(t_{c} - t_{o}) - (t_{T_{3}} - t_{o}) G_{T_{3}} G_{c_{i}}^{-1}]^{-1},$$
(5.37)

где суммарные расходы воды в сети и через бойлера ТЭЦ в расчете на ј котлов котельной $G_c = \sum_{i=1}^{j} G_{ci}$, $G_{T_{3}} = \sum_{i=1}^{j} G_{T_{3}}$, t_c , t_o , $t_{T_{3}}$ – температура прямой, обратной воды в сети и на выходе из ТЭЦ.

Температура воды на выходе из котла $t_{\kappa_{2i}}^p = t_{\tau_{1i}}^p + Q_i / (CG_{\kappa_{\tau_i}})$ должна отвечать условиям надежности его работы и защиты поверхностей нагрева от низкотемпературной коррозии, т.е.

$$\mathbf{t}_{c} \le \mathbf{t}_{\kappa 2i}^{\min} \le \mathbf{t}_{\kappa 2i}^{p} \le \mathbf{t}_{\kappa 2i}^{\operatorname{nped}},$$
(5.38)

$$t_{o} \le t_{\tau 1i}^{AO\Pi} \le t_{\tau 1i}^{p} = t_{\kappa 2i}^{p} - Q_{i} / (CG_{\kappa \tau i}),$$
 (5.39)

где $t_{\kappa2i}^{min}$ – минимально-возможная в данных условиях температура воды на выходе из котла; $t_{\kappa2i}^{nped}$ – предельно-максимальная температура нагрева воды в котле, отвечающая его паспортным данным; $t_{\tau1i}^{don}$ – минимально-допустимая температура воды на выходе в котел по условиям низкотемпературной коррозии. Количественные соотношения между теплоносителями (рис. 5.1) G_{ci} , $G_{\tau9qi}$, $G_{\kappa\taui}$ в расчете на один котел разделим на три категории:

в 1-ой категории $G_{T_{3}_{2}_{1}_{1}} \leq G_{ci} \leq G_{\kappa_{Ti}}$, во 2-ой категории $G_{T_{3}_{2}_{1}_{1}} \leq G_{\kappa_{Ti}} \leq G_{ci}$, в 3-ей категории $G_{\kappa_{Ti}} \leq G_{T_{3}_{2}_{1}_{1}} \leq G_{ci}$.

Исследования показатели, что каждая из этих категорий комплекса

теплоснабжения имеет свои оптимальные режимы, зависящие от потоков G_{n1i} и G_{n2i} . Все остальные потоки воды в трубопроводах котельной согласно схеме на рис. 5.1 являются функциями G_{n1i} и G_{n2i} .

$$G_{pi} = G_{\kappa \tau i} - G_{ci} + G_{\pi 1 i} + G_{\pi 2 i} \ge 0, \qquad (5.40a)$$

$$G_{\text{ori}} = G_{\text{ci}} - G_{\text{THI}} - G_{\text{nli}} \ge 0, \qquad (5.406)$$

$$G_{\pi_{3i}} = G_{\pi_{2i}} - G_{\pi_{2i}} \ge 0, \qquad (5.40B)$$

$$G_{\text{BXi}} = G_{\text{ci}} - G_{\pi 1 \text{i}} - G_{\pi 2 \text{i}} \ge 0.$$
 (5.40r)

1-ая категория количественных соотношений теплоносителей G_c , $G_{_{T94}}$, $G_{_{KT}}$ (в расчете на один котел, индекс і опускаем) характерна тем, что она позволяет выдерживать температуру воды $t_{_{K2}}$ на выходе из котла равной температуре воды t_c в сети, т. е. $t_{_{K2}} = t_c$. При этом загрузка насоса рециркуляции $G_p \ge 0$ и потоки воды $G_{_{\Pi1}} = 0$, $G_{_{\Pi2}} = 0$. Насос рециркуляции может быть отключен только при $G_{_{KT}} = G_c$. В случае, когда по условиям низкотемпературной коррозии согласно неравенствам (5.38), (5.39) $t_{_{K2}}^p > t_c$, тогда включается насос рециркуляции ($G_p > 0$), а величина потока $G_{_{\Pi1}}$ (при $G_{_{\Pi2}} = 0$), устанавливается равной:

$$G_{\pi 1} = G_c \frac{t_{\kappa 2}^p - t_c}{t_{\kappa 2}^p - t_o}.$$
 (5.41)

2-ая и 3-я категории количественных соотношений теплоносителей характеризуются тем, что они предусматривают два разных режима нагрева воды при отключенном насосе рециркуляции ($G_p = 0$): один с минимальновозможной температурой $t_{\kappa 2}^{min}$ на выходе из котла, другой – $t_{\kappa 2}^{max}$ – с максимальной. В частности, для 2-ой категории:

$$t_{\kappa 2}^{\min} = t_{\tau_{3}\mu} + \frac{G_{c}}{G_{\kappa \tau}} (t_{c} - t_{\tau_{3}\mu}),$$

$$t_{\kappa 2}^{\max} = t_{o} + \frac{G_{c}}{G_{\kappa \tau}} (t_{c} - t_{o}).$$
(5.42)

В случае, когда на основании формулы (5.42) оказывается, что $t_{\kappa 2}^{\min} \leq t_o + G_{\kappa T}^{-1}[G_c(t_c - t_o) - G_{\delta \dot{\gamma} \ddot{o}}(t_{\delta \dot{\gamma} \ddot{o}} - t_{\hat{i}})]$, т.е. вопреки условиям (5.39) $t_{T1}^{\min} = t_{\kappa 2}^{\min} - G_{\kappa T}^{-1}[G_c(t_c - t_o) - G_{T_{3} \amalg}(t_{T_{3} \amalg} - t_o)] \leq t_o$, тогда в дальнейших расчетах согласно условиям (5.39) рабочую температуру воды на входе в котел принимаем равной $t_{T1}^p \geq t_o$.

Для 3-ей категории величина $t_{\kappa 2}^{min}$ вычисляется так же, как и для 2-ой категории по формуле (5.42), а температура $t_{\kappa 2}^{max}$:

$$t_{\kappa 2}^{\max} = t_{T_{34}} + \frac{Q}{CG_{\kappa T}}.$$
 (5.43)

В том случае, когда согласно условиям (5.38), (5.39), рабочая температура воды $t_{\kappa 2}^p$ на выходе из котла лежит в пределах $t_{\kappa 2}^{\min} \leq t_{\kappa 2}^p \leq t_{\kappa 2}^{\max}$, тогда, не включая насос рециркуляции ($G_p = 0$), следует установить следующие значения потоков G_{n1} и G_{n2} :

для 2-ой категории

$$G_{\Pi 1} = G_{\kappa T} \left(t_{\kappa 2}^{p} - t_{\kappa 2}^{min} \right) \left(t_{T \ni \mu} - t_{o} \right)^{-1} = = \left[G_{\kappa T} \left(t_{\kappa 2}^{p} - t_{T \ni \mu} \right) - G_{c} \left(t_{c} - t_{T \ni \mu} \right) \right] \left(t_{T \ni \mu} - t_{o} \right)^{-1} , G_{\Pi 2} = G_{\kappa T} \left(t_{\kappa 2}^{max} - t_{\kappa 2}^{p} \right) \left(t_{T \ni \mu} - t_{o} \right)^{-1} = = \left[G_{c} \left(t_{c} - t_{o} \right) - G_{\kappa T} \left(t_{\kappa 2}^{p} - t_{o} \right) \right] \left(t_{T \ni \mu} - t_{o} \right)^{-1} .$$
(5.44)

для 3-ей категории величина G_{n1} вычисляется так же, как и для 2-ой категории по формуле (5.44), а расход потока G_{n2} равен:

$$G_{\Pi 2} = G_{KT} \left(t_{K2}^{max} - t_{K2}^{p} \right) \left(t_{T34} - t_{o} \right)^{-1} + G_{T34} - G_{KT} = = G_{T34} - G_{KT} \left[t_{K2}^{p} - t_{o} - Q(CG_{KT})^{-1} \right] \left(t_{T34} - t_{o} \right)^{-1}.$$
(5.45)

В том случае, когда нагрузка котла равна или больше $(Q \ge Q^{rp})$ некоторой условной величины $Q^{rp} = C[G_{\kappa T}(t_{T_{34}} - t_o) + G_c(t_c - t_{T_{34}})]$, тогда рабочая температура воды $t_{\kappa 2}^p$ лежит в пределах $t_o + QC^{-1}G_{\kappa T}^{-1} \le t_{\kappa 2}^p \le t_{\kappa 2}^{max}$, т.е. согласно (5.39) $t_{T1} \ge t_o$.

В случаях, когда по условиям эксплуатации, а также в соответствии с неравенствами (5.38), (5.39) $t_{\kappa_2}^p > t_{\kappa_2}^{max}$, тогда включается насос рециркуляции $(G_p > 0)$ и устанавливаются соответствующие значения потоков G_{π_1} и G_{π_2} , а именно:

для 2-ой категории соотношения теплоносителей:

– если $t_{\kappa 2}^p \leq t_{\kappa 2}^{rp} = t_o + G_c (t_c - t_o) G_{r_{34}}^{-1}$, тогда величина $G_{\pi 1}$ вычисляется по формуле (5.41), как для 1-ой категории, а $G_{\pi 2} = 0$;

-если $t_{\kappa 2}^{p} \ge t_{\kappa 2}^{rp}$, тогда

$$G_{\pi 2} = \frac{G_{\pi 3 \mu}(t_{\kappa 2}^{p} - t_{o}) - G_{c}(t_{c} - t_{o})}{t_{\kappa 2}^{p} - t_{\tau 3 \mu}}.$$
(5.46)

Для 3-ей категории соотношения теплоносителей при $t_{\kappa_2}^p > t_{\kappa_2}^{max} = t_{\tau_{34}} + Q(CG_{\kappa_T})^{-1}$ также включается насос рециркуляции, величина G_{π_1} вычисляется по формуле (5.46), а значение G_{π_2} равно:

$$G_{\pi 2} = \frac{G_{c}(t_{\kappa 2}^{p} - t_{c}) - (G_{c} - G_{\tau \Im \downarrow})(t_{\kappa 2}^{p} - t_{o})}{t_{\kappa 2}^{p} - t_{\tau \Im \downarrow}}.$$
 (5.47)

Изложенные результаты исследования рекомендуются для разработки соответствующих программных средств, позволяющих оптимизировать массовые и температурные потоки по системе теплоснабжения в целом. В основном это касается систем теплоснабжения с водогрейными котлами, работающими в основном и пиковом режиме совместно с ТЭЦ.

В таблице 5.3 приведены результаты примерных расчетов 8- и принципиально возможных режимов работы котельной, состоящей из одного котла типа ПТВМ-100 или КВГМ-100 (рис. 5.1). 7-ой режим, будучи не реальным, приведен лишь с целью сравнения его с остальными режимами. Каждый из 8и вариантов распределения нагрузок предусматривает следующие условия работы внешней теплосети и ТЭЦ (по 2-ой категории): G_c = 3150 т/ч, G_{тэц} = 1760 т/ч, G_{ск} = 1390 т/ч, G_{кт} = 2500 т/ч, наружная температура воздуха t_н = -15 °С. В теплосети: t_c = 122 °С, t_{тэц} = 117,62 °С, t_o = 61 °С, тепловая нагрузка сети Q_c = 192,16 Гкал/ч = 223,5МВт, Q_{тэц} = 99,65 Гкал/ч = 115,9 МВт, тепловая нагрузка котла Q_{ê ò} = 92,5 Гкал/ч = 107,6 МВт. Абсолютные значения температур t_{т1} и t_{к2} в каждом из восьми режимов работы котла разные, однако, перепад этих температур $\Delta t = t_{\kappa2} - t_{т1} = 37$ °С во всех случаях одинаковый. Восьмой режим работы котла является оптимальным. Эффективность всех остальных режимов (табл. 5.3) сравнивается с восьмым, т.е.

$$\eta = \eta^{\text{опт}} - \Delta \eta = \eta^{\text{опт}} - K_{yx} (t_{\kappa 2}^{\text{опт}} - t_{\kappa 2}), \qquad (5.48)$$

где при сжигании природного газа $K_{yx} \approx -0.05 \% / {}^{o}C$ и соответственно для мазута – $K_{yx} \approx -0.047 \% / {}^{o}C$. Экономия топлива (абсолютная и в %) вычислена по формулам:

$$C_{_{3\kappa}} = \Delta b Q_{_{\kappa T}} \cdot 10^{-3}, \text{тут/ч},$$

$$\delta = C_{_{3\kappa}} \cdot 10^{3} \cdot 100 \cdot (b Q_{_{\kappa T}})^{-1}, \%$$

$$(5.49)$$

Данные, приведенные в таблице 5.3, дают представление о величине экономического эффекта (экономия топлива до 1,48 %), который может быть реализован только за счет оптимизации распределения потоков воды (т. е. в данном случае потоков $G_{i\,1}$, $G_{i\,2}$) в пределах самой котельной, работающей в пиковом режиме. Ниже на рис. 5.6 (в порядке примера) дана фрагмент из рабочего листа программного файла ВКТ1, позволяющего оптимизировать значения температур и массовых потоков воды в системе теплоснабжения на основании заданных исходных данных. Остальные показатели системы теплоснабжения, включая тепловой режим работы котла, вычисляются по отдельной программе, изложенной в разделе 4.4 главы 4. В соответствии с этим в главе 4 на рис. 4.6a (в порядке примера) дана соответствующая распечатка рабочего листа по результатам теплового расчёта котла КВГМ-100, обеспе-

чивающего заданный режим работы системы теплоснабжении, приведенный на рис. 5.6. в главе 5.

Аналогичные результаты примерных расчётов с помощью того же программного файла ВКТ1 даны на рис. 5.7 данной главы 5 и в таблице на рис. 4.66 в главе 4 при работе котла КВГМ-100 в пиковом режиме совместно с ТЭЦ.

Таблица 5.3. Варианты распределения разнотемпературных потоков воды при работе котла КВГМ-100 в пиковом режиме (рис. 5.1) по сравнению с оптимальным (8, опт.). Топливо – природный газ. Нагрузка котла постоянна: $Q_{ab} = 92,5$ Гкал /ч.

						60		
Обозн.	t ₁₁	t _{к2}	t _{BX}	G _p	$G_{\pi 1}$	$G_{\pi 2}$	G от	G _{п 3}
Разм.	°C	°C	°C	т/ч	т/ч	т/ч	т/ч	т/ч
1	90,00	127,00	87,00	187,5	139,4	698,1	1250,6	1062,0
2	90,00	127	90	0	170,5	479,5	1219,5	1059,7
3	100,86	137,86	90,00	567,3	447,2	770,1	942,8	989,9
4	100,86	137,86	100,86	0	650,0	0	740,0	1760,0
5	113,00	150,00	85,00	1077,0	570,1	1040,8	819,9	719,2
6	113,00	150,00	90,00	958,3	638,0	970,3	752,0	789,7
7	133,18	170,18	117,62	740,1	1390,0	0	0	1760,0
8, опт	86,14	123,14	86,14	0	0	650,0	1390	1110,0

Таблица 5.3. Продолжение.

G _{BX}	η	b	Δt_{yx}	Δη	Δb	ΔG_{p}	$C_{_{3K}} \cdot 10^3$	δ
т/ч	%	кг/Гкал	°Ċ	%	кг/Гкал	т/ч	тут/ч	%
2312,5	92,16	155,16	3,86	0,193	0,36	187,5	33,30	0,232
2500,0	92,16	155,16	3,86	0,193	0,36	0	33,30	0,232
1932,7	91,62	156,08	14,72	0,736	1,28	567,3	118,40	0,820
2500,0	91,62	156,08	14,72	0,736	1,28	0	118,40	0,820
1539,1	91,01	157,13	26,96	1,343	2,33	1077,0	215,53	1,483
1541,7	91,01	157,13	26,86	1,343	2,33	958,3	215,53	1,483
1760,0	90,00	158,90	47,04	2,352	4,10	740,1	379,25	3,580
2500,0	92,35	154,80	0	0	0	0	0	0

Программное средство ВКТ1 выполняет расчёт тепловой схемы котельной и системы теплоснабжения в целом в расчёте на один котёл согласно результатам исследования, изложенным выше. Одновременно выполняется тепловой расчёт котла КВГМ-100 в основном (ТСП-О) и в пиковом (ТСП-П) режимах с традиционными схемами питания соответственно по 4-х и 2-х ходовым схемам, предусмотренным проектом. Расчёт режима работы котла выполняется на основании исходных данных, вводимых в программу предварительно при её установке. В частности, вводятся теплофизические характеристики рабочих газов, сжигаемого топлива, данные о конструктивных размерах поверхностей нагрева в топке и газоходе котла, ряд показателей и коэффициентов из норм теплового расчёта [51].

Как видно, данные, приведенные на рис. 5.6 и 5.7 отвечают разным

схемам питания котлов: в режимах с ТСП – О и с ТСП–П. В случае ТСП – О (рис. 5.6) исходными данными для расчёта являются: температура прямой(t_c) и обратной (t_o) воды в теплосети, тепловая нагрузка котла ($\Theta_{\kappa \tau i}$), расход воды ($G_T = G_K$) через котёл и температура её ($t_{\tau 1}$) на входе. В случае ТСП – П (рис. 5.7) к этим исходным данным добавляются значение

Рис. 5.6. Расчёнтые показатели системы теплоснабжения при загрузке котла в базовом режиме.

температуры сетевой воды ($t_{TЭЦ}$) за бойлерами ТЭЦ и долевая составляющая (в расчёте на один котёл) расхода воды от ТЭЦ ($G_{TЭЦ}$) по отношению к расходу воды в теплосети ($G_c G_c$), т.е. $g_{TЭЦ} = G_{TЭЦ} / G_c$.

Оптимизация режимов работы котла с ТСП - О сводится к расчёту массовых и тепловых потоков по трубопроводам в пределах котельной при условии, что температура воды на входе в котёл определяется минимально – допустимым значением температуры уходящих газов. В случае ТСП – П к такой оптимизации добавляется задача [70] по отысканию режимов с минимальной загрузкой насоса рециркуляции или при полным его отключении.

Расчёт схемы котельной с ТСП – О котла (при исходных данных, заданных на рис. 5.6) сводится к решению замкнутой системы уравнений и получению однозначных результатов.

В случае ТСП – П (при исходных данных, заданных на рис. 5.7) система уравнений относительно анализируемых показателей не замыкается и

сводится к уравнению $G_p = f(G_{\pi i})$, на основании которого вычисляются предельно допустимые по условиям эксплуатации значения G_p^{min} , G_p^{max} и адекватные им остальные результаты анализа.

Программа предусматривает автоматическое построение графиков, позволяющих изучать влияния ряда факторов на экономичность работы ко-

ВКТ1 Показатели режимов работы водогрейного котла типа КВГМ с традиц. (2-х ход.) схемой питания в пиковом режиме (ТСП - П). Опред. массовых потоков и их темпе-

ратур по	э технол	огически	м трубоп	роводам	1. гопли	во - мазу	Γ.	X \	— исх. д	анные
OT A=	90,00	Пос	троение	графико	ов по а	ргумента	м А1-	A 8	ДО А =	85,00
Pac-	90,00	89,44	88,89	88,33	87,78	87,22	86,67	86,11	85,56	85,00
чёт	1	2	3	4	5	6	7	8	9	10
котла	Сохран	ИТЬ СКС	пировать	Удал.	из нак.	Удал. из	в буф.	Гестирова	ть Соз	ц. теста
g _{тэц}	t _c	t _{тэц}	to	Gκ	G _τ	Θ _{κοτi} *10 ⁻⁶	t _{τ1} = t _{κτ1}	t _{r2}	Θ _{ci} *10 ⁻⁶	Θ _{тэці} *10 ⁻⁶
0,500	110,0	80,0	55,0	1200,0	1300,0	90,00	75,0	119,2	116,47	26,47
-	град	град	град	т/ч	т/ч	Гкал/ч	град	град	Гкал/ч	Гкал/ч
A 1	A 2	A 3	A 4	A 5	A 6	Α7	A 8	mir	n n	nax
G _{ci}	G _{тэці}	G _{кт}	$\mathbf{t}_{\kappa 1} = \mathbf{t}_{\kappa 1}$	t _{ĸ2}	t _{кт2}	Bp	t,	t _{r1v}	η _{δp}	b _{δp}
2117,6	1058,8	2500,0	75,0	102,1	111,0	10217,2	963,9	213,1	0,9016	158,4
т/ч	т/ч	т/ч	град	град	град	кг/ч	град	град	-	кг/Гкал
C =	0,001	G _{n1}	КОР	Корре	ктировка		Вариан	ты загру	/зки (mir	n, max)
Гкал / (т*град)	10,0		□ показа	ат. поиск	a	Ha	acoca pel	иркуляц	ии.
			G _K G _{KT}	G _{рк}		G _c	Обозн.	G p	G _{n1}	G _{n2}
		l ₃	$\mathbf{t}_{\kappa 2} \mathbf{t}_{\kappa \tau 2}$		t _{np}	tc	G ^{min}	420,2	37,8	0,0
	<u> </u>	$\underline{\lambda}_3$	тк3				G ^{max}	450,7	0,0	68,3
	l f					ļ	Разм.	т/ч	т/ч	т/ч
	t _{κ23}	[t _{r32}				$\langle \rangle$	06024	G	G	G
		<u> </u>				\bigcirc		1059.9	О _{рк}	2117 6
				-		T		1050,0	2019,0	2117,0
Q ₁				↓)		$\dot{-}$	G _p	990,5	2049,3	2049,3
			тк2	Ť		\bigcirc	Разм.	Т/Ч	Т/Ч	Т/Ч
		∏ t	G	G			Обозн.	G _{ск}	G _{ot}	G _{BX}
	ι <u>ι</u> κ12	V ¹	O _T	Οp		n2 6	G ^{min}	1058,8	1021,0	2079,8
							G ^{max}	1058,8	1058,8	2049,3
	/ 🕻	2 ₁ Δα	тк1				Разм.	т/ч	т/ч	т/ч
/					⊢ ^G ^{ск} √−	ł	Обозн.	t _{an}	t_~	Θ_12*10 ⁻⁶
† Ì		````````````````````````````````	=t			G	G, min	110.0	67.7	2.08
		G	(K11			- 194	G ^{max}	111,0	67,1	5,46
	t ₇₂	(),-			Go	Тэц	Разм.	град	град	Гкал/ч
	G _τ	Ť	G _{кт}	J G _{BX}	G _{n3}	t _{TЭЦ}	Baam			
	t _{τ1} =t _{κτ1}		t _{кт1}		~~		газр.	д.т.н. баи	рашевск	ии D.A.
	D = =	D					~			

Рис. 5.7. Расчётные показатели системы теплоснабжения при загрузке котла в пиковом режиме.

тельной в целом, и может быть рекомендована для выполнения исследовательских, проектно – конструкторских, наладочных и других работ в условиях производства. Результаты расчётов, приведенные в порядке примеров на рис. 5.6, 5.7 могут быть использованы при оптимизации нагрузок между котлами. При работе котлов в пиковом режиме (рис. 5.7) программа позволяет определить такой вариант распределения потоков воды в пределах котельной, при котором насос рециркуляции работает с минимальной нагрузкой (G^{min}_n), либо отключён совсем.

ВЫВОДЫ И РЕКОМЕНДАЦИИ.

Оптимальное распределение разнотемпературных потоков в системе теплоснабжения предусматривает соблюдение предельно-минимальных значений температур на входе и выходе из котла в зависимости от его тепловой нагрузки и значений температур прямой и обратной воды в теплосети. Поэтому решение такой задачи сопряжено с тепловым расчётом котла и схемы теплоснабжения в целом. Разработанное в порядке примера программное средство по оптимизации температурных режимов системы теплоснабжения подтверждает эффективность такого мероприятия в условиях эксплуатации. В результате на основании анализа режимов работы комплекса «котельная – теплосеть» можно констатировать:

1. Оптимизация температурного режима системы теплоснабжения с котлом, работающим в базовом режиме, сводится в основном к определению минимальной величины загрузки насоса рециркуляции.

2. Оптимизация температурного режима системы теплоснабжения с котлом, работающим в пиковом режиме, позволяет определить два варианта его работы: с максимальной и с минимальной загрузкой насосов рециркуляции.

3. Оптимизация режимов работы системы теплоснабжения предусматривает уменьшение до минимума разрывов между значениями температур воды на выходе из котла и в прямой теплосети.

4. Определены три категории режимов работы комплекса теплос- набжения, каждый из которых (в расчете на один котел) характеризуется определенными соотношениями расходов воды в сети, через бойлера ТЭЦ и через котел.

5.4. Распределение нагрузок между котлами в пределах котельной.

Для одновременной оптимизации третьего фактора $Q_i^{\text{опт}}$ согласно функции (5.34) и в соответствии с материалами, изложенными выше, воспользуемся общим выражением по расчету среднеинтегрального значения удельного расхода топлива "b" по котельной в целом. При заданной тепловой нагрузке котельной $Q_{\kappa\tau} = \Sigma Q_i$ минимизацию топливных затрат, в частности, среднего удельного расхода топлива по котельной проще всего контролировать на основании формулы:

$$b = \sum_{i=1}^{j} \left(Q_i \, b_i \right) \left(\sum_{i=1}^{j} Q_i \right)^{-1}, \qquad (5.50)$$

где $b_i = \eta_i^{-1} Q_6 -$ удельный расход топлива; $\eta_i^{-1} -$ КПД брутто котла; $Q_y -$ теплота сгорания условного топлива.

В соответствии с этим расчётный показатель b по котельной в целом

на основании формулы (5.50) выразим так:

$$b Q_{KT} Q_{y} = \sum_{i=1}^{J} \left(Q_{i} \eta_{i}^{-1} \right).$$
 (5.51)

Значения $Q_{\kappa\tau}$ и Q_y в формуле (5.51) являются постоянными. Следовательно, контроль за оптимизацией нагрузок котлов в котельной можно выполнять на основании двух показателей в формуле (5.51), доступных к измерениям в условиях эксплуатации, т. е. Q_i и η_i . Для отыскания минимума функции (5.51) определим систему уравнений частных производных:

$$\partial b/\partial Q_1 = 0$$
, $\partial b/\partial Q_2 = 0$, ..., $\partial b/\partial Q_1 = 0$, a именно:

$$\eta_{1}^{-1} \frac{\partial Q_{1}}{\partial Q_{1}} - \eta_{1}^{-2} Q_{1} \frac{\partial \eta_{1}}{\partial Q_{1}} + \eta_{2}^{-1} \frac{\partial Q_{2}}{\partial Q_{1}} - \eta_{2}^{-2} Q_{2} \frac{\partial \eta_{2}}{\partial Q_{1}} + \dots + \eta_{j}^{-1} \frac{\partial Q_{j}}{\partial Q_{1}} - \eta_{j}^{-2} Q_{j} \frac{\partial \eta_{j}}{\partial Q_{1}} = 0,$$

$$\eta_{1}^{-1} \frac{\partial Q_{1}}{\partial Q_{2}} - \eta_{1}^{-2} Q_{1} \frac{\partial \eta_{1}}{\partial Q_{2}} + \eta_{2}^{-1} \frac{\partial Q_{2}}{\partial Q_{2}} - \eta_{2}^{-2} Q_{2} \frac{\partial \eta_{2}}{\partial Q_{2}} + \dots + \eta_{j}^{-1} \frac{\partial Q_{j}}{\partial Q_{2}} - \eta_{j}^{-2} Q_{j} \frac{\partial \eta_{j}}{\partial Q_{2}} = 0,$$

$$\eta_{1}^{-1} \frac{\partial Q_{1}}{\partial Q_{j}} - \eta_{1}^{-2} Q_{1} \frac{\partial \eta_{1}}{\partial Q_{j}} + \eta_{2}^{-1} \frac{\partial Q_{2}}{\partial Q_{j}} - \eta_{2}^{-2} Q_{2} \frac{\partial \eta_{2}}{\partial Q_{j}} + \dots + \eta_{j}^{-1} \frac{\partial Q_{j}}{\partial Q_{j}} - \eta_{j}^{-2} Q_{j} \frac{\partial \eta_{j}}{\partial Q_{j}} = 0,$$

в которой по условиям оптимизации показатели изменения нагрузок кот-лов имеют разные знаки, т. е. в отличие от $\partial Q_1 / \partial Q_1 = 1,..., \partial Q_j / \partial Q_j = 1$ и т. д. частные производные $\partial Q_2 / \partial Q_1 = -1, \quad \partial Q_3 / \partial Q_1 = -1,..., \partial Q_j / \partial Q_1 = -1, \quad \partial Q_j / \partial Q_2 = -1$ и т. д. В соответствии с этим там же: $\partial \eta_1 / \partial Q_2 = \partial \eta_1 / \partial Q_3 = ... = \partial \eta_1 / \partial Q_j = -\partial \eta_1 / \partial Q_1; \quad \partial \eta_2 / \partial Q_3 = \partial \eta_2 / \partial Q_1 = ... = \partial \eta_2 / \partial Q_j = -\partial \eta_2 / \partial Q_2;$...: $\partial \eta_j / \partial Q_2 = \partial \eta_j / \partial Q_3 = ... = -\partial \eta_j / \partial Q_j.$

Тогда на основании обобщения изложенных формул общий вид одного из таких уравнений, составляющих систему, для каждого i-го котла запишем так [70]:

$$Q_{\kappa \tau} Q_{y} \frac{\partial b}{\partial Q_{i}} = \frac{2}{\eta_{i}} \left(1 - \frac{Q_{i}}{\eta_{i}} \frac{\partial \eta_{i}}{\partial Q_{i}} \right) - \delta = 0, \qquad (5.52)$$

где

$$\delta = \sum_{i=1}^{j} \frac{1}{\eta_i} - \sum_{i=1}^{j} \left(\frac{Q_i}{\eta_i^2} \frac{\partial \eta_i}{\partial Q_i} \right).$$
(5.53)

КПД брутто котла η_i и его изменение $\partial \eta_i / \partial Q_i$ по мере оптимизации нагрузок в котельной согласно формулам (5.52), (5.53) определяются разными методами. Рассмотрим два из них: 1-ый метод, основан на аппроксимации функции $\eta_i = f(Q_i)$, 2-ой – на результатах анализа полуэмпирической формулы Я. П. Пекера [10] по расчёту балансовых потерь q_2 с уходящими газами. По 1-му методу аппроксимационную функцию $\eta_i = f(Q_i)$, входящую в систему уравнений (5.52), (5.53) выразим в виде полинома, либо в виде прямой, что в диапазоне нагрузок от 40 до 100% с небольшой погрешностью запишем так:

$$\eta_{i} = a_{i} Q_{i} Q_{Hi}^{-1} + C_{i}, \qquad (5.54)$$

$$C_{i} = B_{i} + C_{Hi} (t_{Hi} - t_{Hoi}) + C_{T1i} (t_{T1i} - t_{T1oi}).$$
 (5.55)

Здесь $Q_{i\,i}$ – номинальная нагрузка котла; a_i , B_i – коэффициенты аппроксимации, установленные по исходно-нормативным характеристикам котла при значениях температур воздуха t_{hoi} , подаваемого на горение, и воды на входе в котёл t_{T1oi} . Поправки на фактические значения этих температур, т. е. воздуха t_{hi} и воды t_{T1i} вводятся в формулу (5.55) с помощью эмпирических коэффициентов C_{hi} и C_{T1i} .

Применительно к двум котлам согласно (5.52) и (5.54) имеем систему уравнений:

$$2\eta_{1}^{-1} (1 - \eta_{1}^{-1} a_{1} Q_{1} Q_{H1}^{-1}) - \delta = 0,$$

$$2\eta_{2}^{-1} (1 - \eta_{2}^{-1} a_{2} Q_{2} Q_{H2}^{-1}) - \delta = 0.$$
(5.56)

В результате решения системы (5.56) относительно аргумента Q_1 с учётом (5.54) и (5.55) при i = 1 и i = 2, а также имея в виду, что $Q_{\kappa \tau} = Q_1 + Q_2$, определяем расчётные формулы по выявлению оптимальных нагрузок $Q_1 = Q_1^{\text{опт}}$ и $Q_2 = Q_2^{\text{опт}}$ между двумя котлами, а именно:

$$Q_{1}^{\text{OIT}} = -0.5\beta/\alpha + [(0.5(\beta/\alpha)^{2} - \gamma/\alpha]^{0.5}, Q_{2}^{\text{OIT}} = Q_{\text{KT}} - Q_{1}^{\text{OIT}},$$
(5.57)

где при i = 1 и i = 2, обозначив $A_i = a_i Q_{Hi}^{-1}$,

$$\alpha = A_{2}^{2} C_{1} - A_{1}^{2} C_{2} \beta = -2 \cdot C_{1} \left[A_{2} \left(Q_{\kappa T} A_{2} + C_{2} \right) + A_{1} C_{2} \right], \gamma = C_{1} \left[Q_{\kappa T} A_{2} \left(Q_{\kappa T} A_{2} + 2 \cdot C_{2} \right) + C_{2} \left(C_{2} - C_{1} \right) \right].$$
 (5.58)

В таблицах 5.4 и 5.5 даны выкопировки из рабочего листа программного файла ОПТв1, позволяющего оптимизировать тепловые нагрузки водогрейных котлов, работающих в котельной на одну сеть. В таблице 5.4 приведены результаты оптимизации нагрузок между двумя котлами ($Q_1 = Q_1^{\text{опт}} =$ 87,2 Гкал/ч и $Q_2 = Q_2^{\text{опт}} = 52,8$ Гкал/ч), полученные двумя способами. 1-ый способ основан на определении минимального значения удельного расхода топлива в среднем по котельной, вычисляемого по формуле (5.50). Для этого используется соответствующая операционная система компьюте- ра по отысканию минимума исследуемой функции при определённых огра-

Таблица 5.4. Оптимизация тепловых нагрузок в котельной с 2- мя котлами.

ОПТв1Оптимизация суммарных (ΣQ _{i=1-j} = <mark>140</mark> Гкал / ч =162,8 МВт)															
2.Решение задачи тепловых нагрузок 2-х водогрейных котлов.															
1.Реш	ение за	адачи	Coxp.	Мод.2А	Boc	ст. Мод.2А Сохр. Мод.2Б Восст. Мод.2Б									
ј=2 Принципиальное решение задачи основано на системе уравнений: φ _i −б=0.															
"ин" – исходно-нормативные данные; "ф" и "опт" – показатели до и после оптимизации.															
Ση _i -1=	1/%	ф	0,022		E 14 -	1/% ф 0,00 <u>с </u>									
	1/%	опт	0,022		2K _i =	1/% опт 0,00 0 = 1/% опт 0,02									
Обозн.	Разм.	Обозн.	i ₁	i ₂	ΣΠ _{κοτ}	По котельной: $\Sigma Q_{i=1,i} = Q = Q_1 + Q_2 = Q_1^{017} + Q_2^{017};$									
Qi ^{Max}	Гкал/ч	ин	100,0	100,0		$\varphi_i - \delta = 0$, где $\delta = \Sigma \eta_i^{-1} - \Sigma K_i$; $K_i = a_i Q_i \eta_i^{-2} Q_{H_i}^{-1}$; $\delta = \Sigma \eta_i^{-1} - \Delta Q_i Q_{H_i}^{-1}$									
Q _{Hi}	Гкал/ч	ин	90,0	90,0	Σ	$-\Sigma K_{i}; K_{i} = a_{i} Q_{i} \eta_{i}^{-2} Q_{\mu i}^{-1}; \varphi_{i} = 2\eta_{i}^{-1} (1 - a_{i} Q_{i} n_{i}^{-1} Q_{\mu i}^{-1});$									
G _{KT}	т/ч	ин	1200	1300	0	$\eta_i = a_i Q_i / Q_{Hi} + C_i; C_i = B_i + C_{Hi}(t_{Hi} - t_{Hoi}) + C_{T1i}(t_{T1i} - t_{T1oi}).$									
ai	%	ин	-1,32	-4,64	еЛ	δ _i = 100*(φ _i – б) / б .									
Bi	%	ин	93,9	96,64	з	1-ый и наиболее рациональный способ решения									
С _{ні}	%/ °C	ин	0,043	0,044	ß	задачи основан на определении минимума функ-									
t _{Hi}	°C	ф	-15,0	-15,0		ции b = (Σb _i Q _i)/ΣQ _i с помощью оператора "Поиск									
t _{HOI}	°C	ин	15,0	15,0	Ň	решения" при определённых граничных условиях.									
C _{T1i}	%/ °C	ин	-0,041	-0,040	Ĥ	2-ой способ решения – на основании квадратного ур-ния относительно Q_i^{ont} : $\alpha (Q_1^{ont})^2 + \beta Q_1^{ont} + \gamma = 0$,									
t _{r1i}	°C	ф	68,0	65,0	<u>е</u>										
t _{r1oi}	°c	ин	70,0	70,0	e	где α = A ₂ ² B ₁ - A ₁ ² B ₂ . A ₁ = -0,015 A ₂ = -0,052									
Ci	%	ф	92,69	95,52	ΓO	$\beta = -2 B_1 [A_1 B_2 + A_2 (A_2 Q + B_2)]; V = B_1 [A_2 Q (A_2 Q + 2B_2) +$									
	1/%	ф	0,022	0,023	2 2	B ₂ (B ₂ - B ₁)]; Q ₁ ^{onτ} = -0,5 β α ⁻¹ + [0,25 β ² α ⁻² - γ α ⁻¹] ^{0,5}									
φι		опт	0,022	0,022		$\alpha = 0,23$ CootBetCtBetho: $Q_2^{ont} = Q - Q_1^{ont}$.									
16	1/%	ф	0,00	0,00		β = 1104 87,2 Гкал/ч 52,8 Гкал/ч									
Ki		опт	0,00	0,00		$\gamma = -97944$ $Q_1 = 101,4$ MBT $Q_2 = 61,42$ MBT									
δ _i	%	ф	-1,23	1,23		В целом по котельной: отклонение (ΔΠ _{кот}) фактич.									
		опт	0,00	0,00	$\overline{\mathbf{v}}$	оказ. до оптимизации ("ф") от оптимальных ("опт"									
Qi	Гкал/ч	ф	70,0	70,0	4 4 0 0										
		опт	87,2	52,8	140,0	Δ=100°(В _ф −В _{опт})/В _ф = 0,15 % В случае оптимиза-									
t _{ĸ2 i}	°c	ф	126,3	118,8	122,6	аль – с ф с опт – сос ор ции нагрузок кот-									
		опт	140,7	105,6	127,4	$\Delta t_{k2} = t_{k2} - t_{k2} = -4,65$ С лов с одинаковыми									
η _i	%	ф	91,67	91,91	91,79	Ардрада с одда 🥡 (по коэффициентам)									
		опт	91,41	92,8	91,93	ДІІ – ІІ _ф – І _{0пт} – – -0,14 % Нормативными ха-									
b _i	кг/Гкал	ф	155,8	155,4	155,6	Артрантеристиками ре-									
		опт	156,3	153,9	155,4	до – о _ф – о _{опт} – 0,24 кликал шение задачи обо-									
Bi	т/ч	ф	10,9	10,9	21,8	АР-Р – Р – 0.024 – т/ш ИМИ СПОСОбаМИ									
		опт	13,6	8,1	21,8	$\Delta B = B_{\phi} = B_{00T} = 0,034$ 1/ч не имеет смысла.									

ничениях значений расчётных показателей Q_1 и Q_2 . 2-ой способ – путём непосредственных расчётов по формулам (5.57), (5.58). Как видно, результаты решения обоими способами оптимизации совпадают. В случае оптимизации котельной с 3-мя, 4-мя, 5-ю и более котлами 2-ой способ аналитического решения задачи значительно усложняется, т. к. приводит к уравнениям 3-ей, 4ой и 5-ой степеней относительно аргумента Q_1 соответственно. Поэтому при числе котлов в котельной j > 2 в программном файле ОПТв1 используется только 1-ый способ решения задачи, как это приведено в таблице 5.4.

Здесь следует обратить внимание на одну особенность решения системы уравнений (5.52). В математическом плане она позволяет вычислять ј экстремальных значений определяющих её аргументов Q_i^{опт} > 0, отвечаю-

Таблица 5.5. Оптимизация тепловых нагрузок в котельной с 5-ю котлами.

ОПТв1	Оптимизация суммарных (ΣQ _{і=1-j} = <mark>380</mark> Гкал / ч = 441,9 МВт)													
тепловых нагрузок 5-и водогрейных котлов.														
Решение задачи Сохр. Мод.					А Восст. Мод.5А				Сохр. Мод.5Б Восст. Мод.5Б					
j=5] Принципиальное решение задачи основано на системе уравнений: φ _i −б=0.														
"ин" – исходно-нормативные данные; "ф" и "опт" – показатели до и после оптимизации.														
Ση _i -1=	1/% ф		0,022		<u>Σ</u> Κ. =	1/%	ф	0,00	б = 1/% ф 0,02					
	1/%	опт	0,022			1/%	опт	0,00	0,02					
Обозн.	Разм.	Обозн.	i ₁	i ₂	i ₃	i ₄	i5	ΣΠ _{κοτ}	По котельной:					
Q ^{Max}	Гкал/ч	ИН	100,0	100,0	100,0	100,0	100,0		$\Sigma Q_{i=1-j} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 =$					
Q _{Hi}	Гкал/ч	ин	100,0	100,0	100,0	100,0	100,0		$Q_1^{\text{ont}} + Q_2^{\text{ont}} + Q_3^{\text{ont}} + Q_4^{\text{ont}} + Q_5^{\text{ont}}$					
G _{кт}	т/ч	ИН	1200	1300	1400	1350	1250	5	1. Система уравнений φ _i – б = 0					
ai	%	ИН	-1,32	-4,64	-3,25	-4,12	-2,51	0	используется только для оп-					
Bi	%	ИН	93 ,8	96,64	92,5	92,1	91,5	Б	ред. показат. δі = 100(φ _і − б) / б					
С _{ні}	%/ °C	ин	0,044	0,043	0,042	0,041	0,039	з	б = Ση _i ⁻¹ - ΣК _i ; К _i = a _i Q _i η _i ⁻² Q _{нi} ⁻¹					
t _{Hi}	°C	ф	-15,0	-15,0	-15,0	-15,0	-15,0	m	$\varphi_i = 2\eta_i^{-1}(1 - a_i Q_i \eta_i^{-1} Q_{Hi}^{-1})$					
t _{HOI}	°C	ин	15,0	15,0	15,0	15,0	15,0		η _i = a _i Q _i / Q _{нi} + C _i					
С _{т1i}	%/ °C	ин	-0,041	-0,040	-0,042	-0,038	-0,040	ž	$\mathbf{C}_{i} = \mathbf{B}_{i} + \mathbf{C}_{Hi}(\mathbf{t}_{Hi} - \mathbf{t}_{Hoi}) + \mathbf{C}_{T1i}(\mathbf{t}_{T1i} - \mathbf{t}_{T1})$					
t _{r1i}	°C	ф	72,0	68,0	70,0	67,0	73,0	о н	2. В случае 3-х и более кот- лов в котельной реш. задачи основано на опред. минимума					
t _{r1oi}	°C	ин	70,0	70,0	70,0	70,0	70,0	<u> </u>						
Ci	%	ф	92,40	95,43	91,24	90,98	90	e J						
()	1/%	ф	0,022	0,023	0,023	0,024	0,023	01	функции b = (Σb _i Q _i)/ΣQ _i опера-					
Ψi		опт	0,022	0,023	0,023	0,023	0,023	×	тором "Поиск решения" при					
14	1/%	ф	0,00	0,00	0,00	0,00	0,00	<u>0</u>	опред. граничных условиях.					
Νj		опт	0,00	0,00	0,00	0,00	0,00		Отклонение (ΔΠ _{кот}) фактич. по-					
×	%	ф	-1,28	1,28	2,91	4,95	3,64		оказат. до оптимизации ("ф")					
ο _i		опт	-1,64	1,64	1,64	1,64	1,64	\sim	от оптимальных ("опт")					
Qi	Гкал/ч	ф	75,0	80,0	70,0	73,0	82,0	200 0	A-100*(B - B)/B - 0.35 %					
		опт	100,0	94,4	68,0	50,5	67,1	380,0	$\Delta = 100 (B_{\oplus} - B_{ont})/B_{\oplus} = 0.35$ %					
t _{ĸ2 i}	°C	ф	134,5	129,5	120,0	121,1	138,6	129,1	$A = 4 \Phi = 4 0 \Pi = 42 00$					
		опт	155,3	140,6	118,6	104,4	126,7	133,3	$\Delta l_{K2} = l_{K2} + l_{K2} = -4,2$					
η _i	%	ф	91,41	91,72	88,97	87, 9 8	88,15	89,6	An-n - 0.2 %					
		опт	91,08	91,05	89,03	88, 9	88,53	90	$\Delta \eta = \eta_{\phi} = \eta_{om} = -0.3$ %					
b _i	кг/Гкал	ф	156,3	155,8	160,6	162,4	162,1	159,4						
		опт	156,9	156,9	160,5	160,7	161,4	15 8,8	$\Delta v = v_{\phi} = v_{ont} = -v_{,\phi} + v_{,\phi}$					
Bi	т/ч	ф	11,7	12,5	11,2	11,9	13,3	60,6						
		опт	15,7	14,8	10,9	8,1	10,8	60,4	$\Delta B = B_{\oplus}^{-} B_{OHT} = 0.2 1/4$					

щих только одному условию: $Q_{\kappa \tau} = \sum_{i=1}^{j} Q_i$. При этом достоверность реше-

ний каждого i-го уравнения в системе (5.52) определяется показателями, которые должны быть равными нулю: $\delta_i = 100 \ (\phi_i - \delta) \delta^{-1} \rightarrow 0$, где по аналогии с (5.56) $\phi_i = 2\eta_i^{-1} (1 - \eta_i^{-1} a_i Q_i Q_{H i}^{-1})$. Такой факт имеет место в примерной таблице 5.4 (j = 2): $\delta_i = \delta_1 = \delta_2 \rightarrow 0$, т. е. здесь минимум показателя b, вычисленный на основании формулы (5.50), лежит в пределах, предусмотренных ограничений, определяющих физический смысл исследуемых аргументов: $Q_1^{\text{опт}} \ge Q_1 > 0$ и $Q_2^{\text{опт}} \ge Q_2 > 0$.

В случае примерного расчёта, приведенного в таблице 2 (j = 5), минимум показателя b, установленный по той же формуле (5.50), отвечает аналогичным ограничениям, в частности, $Q_1^{\text{опт}} \ge Q_1 > 0$, $Q_2^{\text{опт}} \ge Q_2 > 0$, $Q_3^{\text{опт}} \ge Q_3 > 0$, $Q_4^{\text{опт}} \ge Q_4 > 0$ и $Q_5^{\text{опт}} \ge Q_5 > 0$, но не удовлетворяет исходной системе уравнений (5.52), т. е. не соответствует экстремуму функции (5.50), т. к. в данном случае $\delta_i \ne 0$.

Далее рассмотрим 2- ой метод решения системы уравнений (5.52), основанный, как уже отмечалось, на анализе полуэмпирической формулы Я.П. Пекера [10] по расчёту балансовых потерь q_2 . В отличие от 1-го метода здесь дополнительно учитываются влияния отклонений от норм избытков воздуха в уходящих газах $\Delta \alpha_{yx}$ и их температуры Δt_{yx} , циркуляции воды в котле ΔG_{kT} и степени загрязнения поверхностей нагрева $\Delta \xi$. Кроме того, здесь большая роль отводится организации систематического мониторинга эксплуатационных показателей котла для выявления необходимых констант в формулах аппроксимации. В конечном итоге на основании исходнонормативных характеристик определяется фактический КПД брутто котла η_i с учётом влияния на него отклонений от базовых норм фактических балансовых составляющих $\Delta q_{2i} = q_{2i} - q_{20i}$, $\Delta q_{3i} = q_{3i} - q_{30i}$, $\Delta q_{4i} = q_{4i} - q_{40i}$, $\Delta q_{5i} = q_{5i} - q_{50i}$, т. е.:

$$\eta_{i} = \eta_{0i} - \Delta q_{2i} - \Delta q_{3i} - \Delta q_{4i} - \Delta q_{5i}, \qquad (5.59)$$

где η_{oi} – исходно-нормативное значение КПД брутто котла; для газомазутных котлов можно считать: $q_{3i} = q_{4i} \approx 0$, $\Delta q_{3i} = \Delta q_{4i} \approx 0$; значения балансовых составляющих q_{5ii} и q_{5i} , как показали испытания [75], практически не зависят от нагрузки котла и определяются известными методами. Таким образом, решение задачи по определению фактического КПД брутто котла η_i сводится, в основном, к вычислению отклонения показателя Δq_{2i} ,

На основании формулы Пекера Я.П. [10] вычисляем исходнонормативное значение (инд. «о») балансовой составляющей q₂₀ (инд. «i» опускаем)

$$q_{2o} = \left(K\alpha_{yxo} + C\right) \left(t_{yxo} - \frac{\alpha_{yxo} t_{xBo}}{\alpha_{yxo} + B}\right) A_{to} K_Q \cdot 10^{-2}$$
(5.60)

и выполняем анализ следующих функций:

$$\mathbf{q}_2 = \mathbf{f} \left(\mathbf{t}_{\mathbf{x}\mathbf{x}}, \boldsymbol{\alpha}_{\mathbf{y}\mathbf{x}}, \mathbf{t}_{\mathbf{x}\mathbf{B}} \right), \tag{5.61}$$

$$t_{yx} = f(t_{r1}, G_{\kappa r}, \alpha_{yx}, \xi),$$
 (5.62)

где t_{xв}, t_{yx}, t_{т1} – фактические значения температуры холодного воздуха, уходящих газов и воды на входе в котел; α_{yx}, ξ – коэффициенты избытка воздуха в уходящих газах и загрязнения поверхностей нагрева котла; G_{кт} – массовый расход воды через котёл.

На основании (5.61), (5.62), запишем:

$$\Delta q_{2} = q_{2} - q_{20} = \frac{\partial q_{2}}{\partial t_{yx}} \left(\frac{\partial t_{yx}}{\partial t_{T1}} \Delta t_{T1} + \frac{\partial t_{yx}}{\partial G_{KT}} \Delta G_{KT} + \frac{\partial t_{yx}}{\partial G_{KT}} \Delta G_{KT} + \frac{\partial t_{yx}}{\partial \alpha_{yx}} \Delta \alpha_{yx} + \frac{\partial t_{yx}}{\partial \xi} \Delta \xi \right) + \frac{\partial q_{2}}{\partial \alpha_{yx}} \Delta t_{yx} + \frac{\partial q_{2}}{\partial t_{xB}} \Delta t_{xB}$$

$$(5.63)$$

$$rge \Delta t_{T1} = t_{T1} - t_{T10}, \ \Delta G_{KT} = G_{KT} - G_{KT0}, \ \Delta \alpha_{yx} = \alpha_{yx} - \alpha_{yx0}, \ \Delta t_{yx} = t_{yx} - t_{yx0}$$

$$\Delta t = t_{T1} - t_{T1}$$

 $\Delta t_{xB} = t_{xB} - t_{xBO}.$

На основании формулы (5.60) вычисляем частные производные из учёта исходно-нормативных показателей, входящие в формулу (5.63):

$$\frac{\partial q_2}{\partial t_{yx}} = \left(\frac{\partial q_2}{\partial t_{yx}}\right)_0 =$$

$$= 10^{-2} K_Q \left(K\alpha_{yx0} + C\right) \left[0,00013 \left(2t_{yx0} - \frac{\alpha_{yx0} t_{xB0}}{\alpha_{yx0} + B}\right) + 0,9805\right], \qquad (5.64)$$

$$\frac{\partial q_2}{\partial t_{xB}} = \left(\frac{\partial q_2}{\partial t_{xB}}\right)_0 = -10^{-2} A_t K_Q \left(K\alpha_{yx0} + C\right) \frac{\alpha_{yx0}}{\alpha_{yx0} + B},$$
(5.65)

$$\frac{\partial q_2}{\partial \alpha_{yx}} = \left(\frac{\partial q_2}{\partial \alpha_{yx}}\right)_0 = 10^{-2} A_t K_Q \left\{ K\alpha_{yx0} - t_{xB0} \left[\frac{K\alpha_{yx0}}{\alpha_{yx0} + B} + \frac{B(K\alpha_{yx0} + C)}{(\alpha_{yx0} + B)^2} \right] \right\}.(5.66)$$

Значения параметров α_{yxo} , t_{yxo} и частные производные $\partial t_{yx} / \partial t_{T1}$, $\partial t_{yx} / \partial G_{\kappa T}$, $\partial t_{yx} / \partial \alpha_{yx}$, входящие в формулы (5.60), (5.63) – (5.66) определяются при составлении исходно-нормативных характеристик котла и могут быть представлены в виде полиномов, как функции его безразмерной нагрузки, т. е. переменной $q = Q/Q_{H}$. В общем виде каждая из этих функций представляется в виде:

$$F(q) = K_{o} + \sum_{i=1}^{j} K_{i} q^{i}, \qquad (5.67)$$

где значения постоянных коэффициентов K_o, K_i и число их ј определяются на основании аппроксимации соответствующих исходно-нормативных зависимостей [10, 76 – 78], устанавливаемых путём целенаправленных испытаний, либо путём организации систематического мониторинга в период эксплуатации котлов.

Производную $\partial t_{yx}/\partial \xi$, входящую в расчётную формулу (5.63), отождествляем с уравнением теплопередачи через загрязнённую стенку котла от газов к воде. В сущности, это средняя плотность теплового потока $q_{T\Pi}$, поступающего от газов к воде через поверхности нагрева котла:

$$\partial t_{yx} / \partial \xi = -(t_{yx} - t_{B}^{cp}) K_{q} = q_{T\Pi}, \qquad (5.68)$$

где t_{B}^{cp} и t_{yx} – средние значения температур воды и газов в котле, K_{q} – коэффициент теплопередачи от газов к воде.

На основании результатов исследования [73] известно, что в конвективном пучке котла $\partial t_{yx} / \partial t_{x} = 0, 99 - 1,04$, т. е. согласно уравнению (5.68) производная $\partial t_{yx} / \partial \xi = q_{T\Pi} \approx$ const. Очевидно, что также постоянной и не зависящей от нагрузки (при исследуемом фактическом состоянии котла) является степень загрязнения поверхностей нагрева, т.е. $\Delta \xi =$ const. Следовательно, с небольшой погрешностью можно считать, что в расчётном уравнении (5.63) комплекс $(\partial t_{yx} / \partial \xi) \Delta \xi =$ const. Его можно вычислить на основании той же формулы (5.63) и определить, как результат неоднократного анализа показателей двух произвольных режимов работы котла с небольшим разрывом во времени ($\Delta \tau = \tau' - \tau''$), определяемом условиями постоянного мониторинга или специальных испытаний:

$$\frac{\partial t_{yx}}{\partial \xi} \Delta \xi = 0,5 \left(\frac{\partial q_2}{\partial t_{yx}} \right)_0^{-1} \left\{ q_2' + q_2'' - 2q_{20} - \left(\frac{\partial q_2}{\partial t_{xB}} \right)_0 \left(t_{xB}' + t_{xB}'' - 2t_{xB0} \right) - \left(\frac{\partial q_2}{\partial t_{yx}} \right)_0 \left(\alpha_{yx}' + \alpha_{yx}'' - 2\alpha_{yx0} \right) - \left(\frac{\partial q_2}{\partial t_{yx}} \right)_0 \left(\left(\frac{\partial t_{yx}}{\partial t_{\tau 1}} \right)' \left(t_{\tau 1}' - t_{\tau 10} \right) + \right) + \left(\frac{\partial t_{yx}}{\partial G_{\kappa T}} \right)' \left(G_{\kappa T}' - G_{\kappa T0} \right) + \left(\frac{\partial t_{yx}}{\partial G_{\kappa T}} \right)' \left(G_{\kappa T}'' - G_{\kappa T0} \right) + \left(\frac{\partial t_{yx}}{\partial G_{\kappa T}} \right)' \left(\alpha_{yx}' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) + \left(\frac{\partial t_{yx}}{\partial \alpha_{yx}} \right)' \left(\alpha_{yx}'' - \alpha_{yx0} \right) \right) \right\}$$

Таким образом, расчётные формулы (5.60), (5.63) – (5.67), (5.69), (5.59) позволяют вычислить фактический КПД брутто котла η_i для последующего использования полученных результатов при решении системы уравнений (5.52). Реализация такого метода оптимизации нагрузок представляет научно-технический интерес в плане дальнейших исследований режимов работы котла. Характерные для этого метода громоздкие вычисления требуют организации постоянной системы мониторинга и применения вычислительной техники.

Наиболее эффективным (3-им) методом оптимизации нагрузок в котельной, работающей и в базовом, и в пиковом режимах, следует считать применение программных средств по тепловым расчётам котлов. Реализацию такого метода оптимизации тепловых нагрузок в котельной следует рассматривать как важное мероприятие по вопросам решения проблем энергосбережения, повышению технического уровня эксплуатации энергоисточников и системы теплоснабжения в целом.

ВЫВОДЫ И РЕКОМЕНДАЦИИ

Результаты исследования, изложенные в данной статье, подтверждают возможность и назревшую необходимость реализации проблем оптимизации котельных на базе соответствующих программных средств при-менительно к условиям производства. Приведенный в порядке примера программный файл ОПТв1 рекомендуется для дальнейших разработок в этой области знаний.

1. Определены основные расчётные формулы, необходимые для организации мониторинга и разработки соответствующих программных средств по оптимизации нагрузок в водогрейной котельной,

2. Приведены и проанализированы результаты примерных расчётов, выполненных с помощью соответствующего программного средства. Обоснована эффективность его применения в условиях эксплуатации.

5.5. Исследование вариантов модернизации топки котла.

Существенным недостатком котлов типа ПТВМ является подверженность заносам конвективных поверхностей нагрева золой и сажистыми частицами. Большую роль в этом процессе играет топка котла.

Наблюдения показывают, что на котлах типа ПТВМ факел от горелок часто достигает конвективного пучка (особенно при работе на мазуте), в то время как остальная часть объема топки, расположенная ниже оси горелок, практически не заполнена факелом. При этом, как правило, чем выше температура газов на выходе из топки, тем больше вероятность загрязнения последующих конвективных поверхностей нагрева.

Положение факела в топке во многом определяется уровнем горелочных устройств над её подом [51]. В отличие от их традиционной компоновки на стенах топки известны и хорошо зарекомендовали себя так называемые подовые горелки. Здесь немаловажную роль играют также размеры холодной воронки. В частности, в топке котла ПТВМ – 100 большие откосы её (порядка 45 градусов) приводят к неоправданному уменьшению топочного объёма.

Конструктивная схема топки котла типа ПТВМ показана на рис.5.8. Как видно из рисунка, не нарушая основного принципа её конфигурации, можно выполнить ряд конструктивных мероприятий, направленных на улучшение топочных процессов. Рассмотрим потенциальную возможность реализации трёх из них: изменений среднего уровня горелок над подом топки, угла откоса холодной воронки и высоты топки в целом. Указанные мероприятия расширяют возможности организации двухступенчатого сжигания топлива при двухъярусном расположении прямоточных горелочных устройств [79], т.е. позволяет в большей мере использовать объем топки в качестве смесеобразовательной камеры продуктов горения для снижения вредных выбросов.

Ниже приведен перечень расчётных формул, необходимых для выполнения этих мероприятий поочерёдно или в комплексе. Ожидаемый эффект от их реализации оценивается косвенно по изменениям температур газов на выходе из топки. Решение указанной задачи основывается на исходных данных, которые можно взять либо из материалов теплового расчёта котла, прилагаемых к его документации, либо установить на основании норм теплового расчёта [51], а именно (см. рис. 5.8):

– линейные размеры исходного варианта конфигурации топки и компоновки горелок в соответствии с данными, приведенными на рис.5.8;
 H_к, L_T, L_Γ, L_Π, h_{Гн}, h_{Гв}; угол откоса холодной воронки α;

– количество горелочных устройств на стенке топки в нижнем – n_í и в верхнем – n_в ярусах;

– массовый расход сжигаемого топлива B_p , удельный объём продуктов сгорания V_r и их нормальная плотность ρ_r^o ;

– коэффициенты аппроксимации A_{Γ} и \overline{B}_{Γ} по расчёту средней теплоёмкости дымовых газов ($C_{\Gamma} = A_{\Gamma} + \overline{B}_{\Gamma} t_{\Gamma}^{BX}$) при их температуре t_{Γ}^{BX} на входе в конвективный пучок, т. е. на выходе из топки;

– теоретическая температура горения t_a , степень черноты топки a_{δ} , постоянная Больцмана C_o и расчётные коэффициенты n и β , определяющие относительное положение (M) максимума температуры пламени по высоте топки [51], т. е. $M = n + \beta h_{ro} H_{T}^{-1}$;

– массовый расход воды $G_{\rm B}$ через котёл и её теплоёмкость $C_{\rm B}$; поверхность конвективного пучка $F_{\rm K}$ и соответствующий ему коэффициент теплопередачи К;

– коэффициент сохранения теплоты φ , учитывающий потери в окружающую среду и среднее значение коэффициента тепловой эффективности экранов ψ_{cp} , учитывающего их загрязнение и влияние, так называемого, углового коэффициента.

Температура газов t_г^{вх} на выходе из топки определяется из уравнения, выраженного относительно последней в не явном виде:

$$\frac{t_{\tilde{a}}^{\tilde{a}\tilde{o}} + 273}{t_{a} + 273} = \frac{Bo^{0,6}}{Bo^{0,6} + \tilde{I} \ \tilde{a}_{\tilde{o}}^{0,6}} , \qquad (5.70)$$

где

$$Bo = \frac{\varphi \hat{A}_{\delta} (VC)_{\tilde{n}\delta}}{C_o F_{c\,\delta} \psi_{\tilde{n}\delta} (t_a + 273)^3} .$$
 (5.71)

Поверхность (в свету) ограждающих стен топки $F_{c\tau}$, параметр Ì, характеризующий относительное положение максимума температуры пламени и теплоёмкость продуктов сгорания $(VC)_{cp}$ в расчёте на 1 кг сожжённого топлива определим, как функции геометрических размеров топочного пространства и размещения амбразур горелок (рис. 5.8):

$$F_{c_{T}} = N_{1} + N_{2} \cos^{-1} \alpha + N_{3} tg \alpha, \qquad (5.72)$$

$$M = n + \beta h_{ro} (H_{\kappa} + N_4 tg\alpha)^{-1}, \qquad (5.73)$$

Рис. 5.8. Конструктивная схема топки котла типа ПТВМ. $(VC)_{cp} = \rho_{\Gamma}^{o} V_{\Gamma} \left[A_{\Gamma} + B_{\Gamma} \left(t_{a} + t_{\Gamma}^{BX} \right) \right] = N_{5} + N_{6} t_{\Gamma}^{BX}, \quad (5.74)$

где

$$N_{1} = 2H_{\kappa}(L_{T} + L_{\Gamma}) + L_{\Gamma}(L_{T} + L_{\Pi}),$$

$$N_{2} = L_{\Gamma}(L_{T} - L_{\Pi}),$$

$$N_{3} = -(L_{T} - L_{\Pi})[L_{\Gamma} + 0.5(L_{T} - L_{\Pi})],$$

$$N_{4} = -0.25(L_{T} - L_{\Pi}),$$

$$N_{5} = \rho_{\Gamma}^{0}V_{\Gamma}(A_{\Gamma} + B_{\Gamma}t_{a}),$$

$$N_{6} = \rho_{\Gamma}^{0}V_{\Gamma}A_{\Gamma}.$$
(5.75)

Согласно схеме на рис.5.8 средне-расчётный уровень горелок над подом топки h_r определим, как средний показатель размещения их между верхним и нижним ярусами так:

$$h_{\Gamma} = (h_{\Gamma H} n_{H} + h_{\Gamma B} n_{B}) (n_{H} + n_{B})^{-1}.$$
 (5.76)

Как видно, показатель \mathbf{h}_{r} не зависит от угла раскрытия холодной во-

MoTo2		Исследование вариантов модернизация (Мод) топки котла										
Точки р	расчёта	0,00	0,22	0,44	0,67	0,89	1,11	1,33	1,56	1,78	2,00	
Kot 1	от А,	Б, В=	0,00	Covn	анить	EDA		Veoe			an Gyd	
	до А,	Б, В=	2,00					удал.	из нак.	удал.	n3 0vw.	
					Coxp	ранить N	1од. 1	Восстановить Мод. 1				
Точки р	расчёта	1,00	1,22	1,44	1,67	1,89	2,11	2,33	2,56	2,78	3,00	
Кот 2 от А, Е до А, Е		Б, В= Б, В=	1,0 3,0	Сохр	анить	ГРА	ФИК	ЬИК Удал.		Удал.	из б∨ф.	
					Сохр	ранить M	1од. 2	Восстановить Мод. 2				
		Автома	тизиро	ванны	й расч	ёти п	острое	строение графиков				
Ука:	зать			A →	δh ^o r	Ука:	зать	Кот 2	Мод	A →	δh° _F	
тип н	котла	Кот 1	Мод	Б — →	α	тип і	котла			Б — →	α	
ПТВМ-50				В →	ΔΗκ	ΠΤΒΝ	/I-100			В →	ΔΗκ	
Расч	іёт осн	овных	показа	ателеё	топки	по мер	ре изме	енения	средн	его ур	овня	
грелок	ιh _{ro} ,	угла р	аскрыт	гия хој	подной	ворон	киαи	высо	ты топ	ки кот.	ла Н _к .	
	Χ	Исход	ные д	анные			Х 🔶	Результаты расчёта				
Наи	мен.	И	сходнь	ые (исх	() дан	ные и	резуль	ьтаты (мод) расчётов				
Обо	озн.	δh _{ro}	α	ΔΗ _κ	Реш	ение	t ^{BX}	Δtr ^{вx}	∆t _г вых	Δt _B ^{B X}	∆t _в вых	
Pa	3M.	-	град	м	зад	ачи	°C	°C	°C	°C	°C	
Vot 1	Исх.	0.20	15,0	0.50	Реш.	ΒЫΠ	1204	-35,98	0.050	0,979	-0,001	
NOLI	Мод	-0,20	5,0	0,50	Реш.	ΒЫΠ	116 8		0,050			
Kor 2	Исх.	0.20	45,0	0.00	Реш.	вып	1265	-52,37	0.067	1 460	0.002	
кот 2	Мод	-0,20	5,0	0,00	Реш.	вып	1213		-0,067	1,409	0,002	
Обо	озн.	Δh _{ro}	Δα	Η _κ	Lr	LT	Ln	n _H	n _B	h _{гн}	h _{гв}	
Pa	зм.	м	град	м	м	м	м	-	-	м	м	
Kot 1	Исх.	0.45	-10,00	7,57	4,160	4,160	0,450	4,00	2,00	2,217	3,077	
KOT T	Мод	-0,45		8,07						1,599	2,459	
Kor 2	Исх.	0.44	-0,70	<mark>8,05</mark> 8,05	6,230	6,230	0,640	6,00	2,00	3,395	4,195	
KUT Z	Мод	-0,44								1,680	2,480	
Обо	озн.	Bp	V _r	ρ _ρ ο	Ar	Б _г	φ	Ψ _{cp}	a _τ	C°	ta	
Разм.		кг/с	м ³ /кг	кг /м ³	Дж/(кгК)	Ҵж/(кгК²)	-	-	-	Вт/(м ² К ⁴)	°C	
Кот 1	Исх. Мод	1,74	12,60	1,32	1070	0,112	0,996	0,600	0,682	6E-0 8	1840	
Кот 2	Исх. Мод	3,47	12,60	1,32	1070	0,112	0,996	0,545	0,778	6E-08	1844	
Обозн.		n	ß	G,	C	К	E.	Ha	H ₊	h,	hra	
Разм.		-	-	кг/с	Дж/(кгК)	Вт/(м ² К	м ²	M	м	м	M	
Кот 1	Исх.							7,075	7,324	2,504	2,255	
	Мод	0,54	-0,20	306	4180	52,40	1170	7.910	7.991	1.885	1.804	
Кот 2	Исх.		-0,20	595	4180	52,40	2960	5,250	6,648	3,595	2,198	
	Мод	0,54						7,800	7,923	1.880	1,758	
Обозн.		Fcr	М	Во	tqα	cosα	(VC) _c n	G,	C,	m	Ĺ	
Pa	зм.	м ²	-	-	-	-	, , , , , , , , , , , , , , , , , , ,	кг/с	Дж/(кгК)	-	-	
Кот 1	Исх.	155.2	0,478	0,81	0,27	0,97	23467		1205	0,027		
	Мол	167.0	0,495	0.75	0.09	1.00	23400	28,94	1201	0,027	0,005	
Кот 2	Исх	242.1	0,474	1,14	1.00	0.71	23588	57,71	1212	0,028		
	Мод	273.8	0,496		0,09	1,00	23490		1206	0,028	0,012	
Рис. 5.9. Фрагмент из программного файла МоТо2.												

ронки а. Поэтому в дальнейшем (рис. 5.8) вводим показатель h_{ro} , учитывающий угол а, что также существенно при расчёте показателя М [51], вычисляемого по формуле (5.73). Итак, средне-расчётный уровень горелочных устройств при их двухъярусной компоновке и при наличии холодной воронки определим так:

$$h_{ro} = h_r - H_r + H_o,$$
 (5.77)

где по данным на рис. 5.8 высота топки до начала холодной воронки

$$H_{o} = H_{\kappa} - 0.5(L_{T} - L_{\Pi}) tg \alpha$$
, (5.78)

а до её средней линии

$$H_{T} = H_{0} + 0.25(L_{T} - L_{\Pi}) tg \alpha$$
 (5.79)

данных до (исх) и после (мод) её модернизации. Соответствующее изменение этой температуры в сравнении с исходным вариантом исполнения конструкции топки определяем как разность:

$$\Delta t_{\Gamma}^{BX} = (t_{\Gamma}^{BX})_{MOJ} - (t_{\Gamma}^{BX})_{MCX} . \qquad (5.80)$$

Практический интерес представляют также оценочные значения отклонений температур газов Δt_{Γ}^{Bbix} за конвективным пучком и воды на входе Δt_{B}^{Bx} и выходе Δt_{B}^{Bbix} из него. Эти показатели можно вычислить на основании соответствующего анализа процесса тепловосприятия конвек- тивного пучка, полагая, что средний коэффициент теплопередачи через его поверхность не изменится.

Тепловосприятие конвективного пучка с поверхностью F_к равно:

$$Q_{\kappa} = KF_{\kappa}\delta\tau, \qquad (5.81)$$

где температурный напор δτ с достаточной точностью представим как разность между средними температурами газов и воды:

$$\delta \tau = t_{\Gamma}^{cp} - t_{B}^{cp}.$$
 (5.82)

Соответственно:

$$t_{r}^{cp} = 0.5(t_{r}^{BX} + t_{r}^{BbIX}),$$

$$t_{B}^{cp} = 0.5(t_{B}^{BX} + t_{B}^{BbIX}).$$
(5.83)

Согласно (5.81) изменение тепловосприятия конвективного пучка после модернизации представим в виде полного дифференциала:

$$dQ_{\kappa} = KF_{\kappa}d(\delta\tau), \qquad (5.84)$$

где на основании (5.82), (5.83)

$$d(\delta\tau) = 0.5 \left(dt_{\Gamma}^{BX} + dt_{\Gamma}^{Bbix} - dt_{B}^{BX} - dt_{B}^{Bbix} \right).$$
 (5.85)

Увеличение тепловосприятия в топке приводит к уменьшению температуры газов на выходе из нее, т.е. на входе в конвективный пучок t_{Γ}^{BX} . В соответствии с этим температура воды t_{B}^{BX} на входе в конвективный пучок возрастает и наоборот. Аналогичная связь имеется также в отношении температур газов t_{Γ}^{Bbix} и воды t_{B}^{Bbix} на выходе из конвективного пучка:

$$G_{\Gamma}C_{\Gamma}dt_{\Gamma}^{BX} \approx -G_{B}C_{B}dt_{B}^{BX},$$

$$G_{\Gamma}C_{\Gamma}dt_{\Gamma}^{BbIX} \approx -G_{B}C_{B}dt_{B}^{BbIX}.$$
(5.86)

На основании (5.86) определяем:

$$dt_{B}^{BX} \approx -w dt_{\Gamma}^{BX},
 dt_{B}^{BbIX} \approx -w dt_{\Gamma}^{BbIX},$$
(5.87)

где w – отношение водяных эквивалентов при массовом расходе газа $G_r = B_p V_r \rho_r^o$:

$$w = \frac{G_{\Gamma}C_{\Gamma}}{G_{B}C_{B}} .$$
 (5.88)

Разность между левыми и правыми частями уравнений (5.86) представляет собой уравнение теплового баланса конвективного пучка:

$$dQ_{\rm K} \approx G_{\rm \Gamma}C_{\rm \Gamma} \left(dt_{\rm \Gamma}^{\rm BX} - dt_{\rm \Gamma}^{\rm Bbix} \right) \approx G_{\rm B}C_{\rm B} \left(dt_{\rm B}^{\rm Bbix} - dt_{\rm B}^{\rm Bx} \right).$$
(5.89)

Тогда на основании (5.84) – (5.89) определяем:

$$\Delta t_{\Gamma}^{\rm BbIX} = (t_{\Gamma}^{\rm BbIX})_{\rm MOZ} - (t_{\Gamma}^{\rm BbIX})_{\rm MCX} \approx dt_{\Gamma}^{\rm BbIX} = dt_{\Gamma}^{\rm BX} \frac{G_{\Gamma}C_{\Gamma} - 0.5 \cdot KF_{K}(1+w)}{G_{\Gamma}C_{\Gamma} + 0.5 \cdot KF_{K}(1+w)}.$$
 (5.90)

Соответственно на основании (5.87) вычисляем:

$$\Delta t_{B}^{BX} = (t_{B}^{BX})_{MOQ} - (t_{B}^{BX})_{UCX} \approx dt_{B}^{BX},$$

$$\Delta t_{B}^{BbIX} = (t_{B}^{BbIX})_{MOQ} - (t_{B}^{BbIX})_{UCX} \approx dt_{B}^{BbIX}.$$
(5.91)

Материалы данных исследований положены в основу разработки программного файла МоТо2, позволяющего выполнять соответствующие расчёты при любых изменениях исходных данных и с одновременным построением графиков. На выкопировке из рабочего листа этого файла (рис. 5.9) представлены результаты примерных расчётов по модерниза- ции топок котлов ПТВМ-50 и ПТВМ-100. В частности, на котле ПТВМ-50 в сравнении с исходным вариантом его исполнения снижен уровень горелочных устройств на относительную величину $\delta h_{ro} = \Delta h_{ro} (h_{ro}^{ucx})^{-1} = (h_{ro}^{mod} - h_{ro}^{ucx}) (h_{ro}^{ucx})^{-1} =$ -0,45/2,255 = (1,804 - 2,255)/2,255 = -0,2. Одновременно увеличена высота топки на $\Delta H_{\kappa} = 0,5$ м и уменьшен откос холодной воронки с 15° до 5° . В результате температура газов на выходе из топки t_г^{вх} снизилась на величину $\Delta t_{r}^{BX} = -35,98$ °C. Аналогичная модернизация выполнена в топке котла ПТВМ-100: уровень горелочных устройств снижен на относительную величину $\delta h_{ro} = -0,2$ и откос холодной воронки уменьшен от 45° до 5°.В результате температура газов на выходе из топки t_{Γ}^{BX} снизилась на величину Δt_{Γ}^{BX} = - 52.37°C.

Результаты выполненных исследований показывают, что изменение температуры газов t_{Γ}^{BX} на выходе из топки, т.е. на входе в конвективный пучок, приводит, как правило, к незначительному её изменению на выходе из

конвективного пучка. Также несущественно изменяется температура воды в конвективном пучке.

ВЫВОДЫ И РЕКОМЕНДАЦИИ.

Для повышения экономичности и коррозионной стойкости поверхностей нагрева ряда котлов традиционных, а также при разработке котлов новых конструкций, их в ряде случаев следует модернизировать. В частности:

1. Улучшить топочные процессы и, как следствие этого, уменьшить занос конвективного пучка путем:

- снижения уровня горелочных устройств в топке котла до минимально-допустимого;

- увеличения объема топки за счет её высоты или ликвидации больших откосов холодной воронки.

2. Материалы исследования и, в частности, упомянутый файл «МоТо2» могут быть использованы в качестве консультационно-справочного средства при выполнении соответствующих конструкторских и наладочных работ.