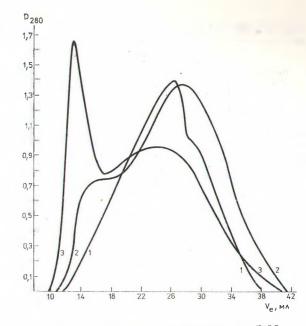
УДК 634.0.861.16

М. А. Зильберглейт, Т. В. Корнейчик, В. М. Резников Белорусский технологический институт им. С. М. Кирова

ИССЛЕДОВАНИЕ ПРОЦЕССА ДЕЛИГНИФИКАЦИИ ДРЕВЕСИНЫ ВОДНЫМИ РАСТВОРАМИ УКСУСНОЙ КИСЛОТЫ

9. МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЕНИЕ УКСУСНОКИСЛЫХ ЛИГНИНОВ¹

Молекулярная масса и характер функции распределения по молекулярным массам являются одними из важнейших физико-химических характеристик препаратов лигиина.


Молекулярные массы и ММР уксуснокислых лигнинов (УКЛ) определяли гель-хроматографией на сефадексе G-50 (рис. 1, 2). Элюентом служил 0,1 М раствор LiCl в ДМСО. Для расчета молекулярных масс использована зависимость, полученная в работе [2].

Как следует из табл. 1, среднемолекулярная масса уксуснокислых лигнинов древесины лиственных и хвойных пород колеблется в довольно широких пределах — от 1900 до 5480. Эти значения ниже соответствующих значений для диоксанлигнина сосны (ДЛС) и промышленного сульфатного лигнина (ПСЛ). Еще больше различаются значения среднечисловой молекулярной массы. Среднечисловая молекулярная масса УКЛ в 5—8 раз меньше, чем для сульфатного и диоксанлигнина. Эти данные подтверждены при измерении среднечисловой молекулярной массы методом изотермической дистилляции на приборе «Микромоль». Для ряда образцов лигнина нами получены значения среднечисловой молекулярной массы 120—240. Следовательно, в препаратах УКЛ содержится значительное количество низкомолекулярных фракций. Соответственно, большинство препаратов УКЛ характеризуется высокой степенью полидисперсности, равной 7—12, в то время

Рис. 1. Гель-хроматограммы препаратов ЛО-60 (1), ЛО-75 (2), ЛО-90 (3).

Puc. 2. Гель-хроматограммы препаратов ЛС-60 (1), ЛС-75 (2), ЛС-90 (3).

как степень полидисперсности диоксанлигнина составляет 5,62, а сульфатного лигнина 3,26. Высокие значения степени полидисперсности и низкие значения среднечисловой молекулярной массы могут быть объяснены, с одной стороны, невысокой интенсивностью конденсационных процессов в твердой фазе, а с другой — протеканием вторичных реакций деструкции лигнина, перешедшего в раствор.

Как показывают результаты обработки интегральных кривых молекулярно-массового распределения (табл. 2), распределение по молекулярным массам лиственных лигнинов практически не зависит от концентрации варочного реагента. Доля фракций с молекулярной массой до 3000 составляет 0,66—0,77, с молекулярной массой 3000—8000 приблизительно 0,22 и с массой более 8000 0,10—0,15. В случае хвойных УКЛ, полученных варкой с 90%-ной уксусной кислотой, доля низкомолекулярной фракции снижается с 0,66 до 0,58 для ели и с 0,77 до 0,56 для сосны. Доля фракций с молекулярной массой 3000—8000

СРЕДНИЕ МОЛЕКУЛЯРНЫЕ МАССЫ И СТЕПЕНИ ПОЛИДИСПЕРСНОСТИ ПРЕПАРАТОВ УКЛ, ЛИОКСАНЛИГНИНА И СУЛЬФАТНОГО ЛИГНИНА*

Таблица 1

Препарат лигнина	\overline{M}_n	\overline{M}_w	\overline{M}_z	$n = \overline{M}_w / \overline{M}_n$	
ЛО-60	560	3900	13690	6,98	
ЛО-75	587	2300	6100	3,99	
ЛО-90	336	3700	13900	10,80	
ЛБ-60	385	3190	10400	8,28	
ЛБ-75	374	4040	14840	10,80	
ЛБ-90	313	3940	14800	12,60	
ЛС-60	442	19/00	5660	4,33	
ЛС-75	365	2300	6680	8,56	
ЛС-90	472	5480	16770	11,62	
ЛЕ-60	333	4140	15700	12,43	
ЛЕ-75	365	3650	12700	10,00	
ЛЕ-90	423	5180	15740	12,25	
ЛЛ-75	406	5040	16400	12,40	
ДЛС [1]	2880	16190	41380	5,62	
псл [1]	2022	6590	22550	3,26	

Расшифровку обозначений препаратов, упоминаемых в табл. 1 и 2, см. в сообщении [3].

¹ Сообщение 8 см. [1].

Препарат лигнина	Содержание фракций с молекулярной массой			Препарат	Содержание фракций с молекулярной массой		
	до 3000	3000— 8000	более 8000	лигнина	до 3000	3000— 8000	бо ле е 80 00
		-					
ЛО-60	0,65	0,23	0,12	ЛС-75	0,74	0,20	0.06
ЛО-75	0,76	0,20	0,04	ЛС-90	0,56	0,24	0.20
ЛО-90	0,68	0.23	0.09	ЛЕ-60	0,66	0.21	0.13
ЛБ-60	0,68	0.22	0,10	ЛЕ-75	0,63	0.27	0.10
ЛБ-75	0.66	0.22	0.12	J1E-90	0.58	0.21	0,21
ПБ-90	0.66	0.20	0.14	ПСЛ	0.58	0.22	0.20
ЛС-60	0,77	0.20	0.03	ДЛС	0.32	0.21	0.47

практически не изменяется с увеличением копцентрации варочного реагента и составляет 0,20—0,27. Для хвойных лигиинов, выделенных 90%-ной уксусной кислотой, характерно паличие более значительной, чем для лиственных лигиннов, доли высокомолекулярной фракции. Повидимому, при делигиификации древесины хвойных пород протекают более значительные конденсационные явления, причем 90%-ная уксусная кислота эффективно растворяет лигиин с большей молекулярной массой.

Сравнение ММР диоксанлигнина сосны и сульфатного лигнина показывает, что ММР сульфатного лигнина близко к ММР ЛС-90, ЛЕ-90, а ММР диоксанлигнина сосны резко отличается от ММР уксуснокислых лигнинов хвойных пород в сторону преобладания высокомолекулярней фракции. Такое различие может быть связано как с более мягкими условиями выделения лигнина, так и с дополнительной очисткой, которой обычно подвергается диоксанлигнин. Интересно отметить и тот факт, что доля фракции с молекулярной массой 3000—8000 практически не зависит ни от природы варочного реагента, ни от породы древесины.

Таким образом, исследование методом гель-хроматографии препаратов уксуснокислых лигиинов показало, что их среднемолекулярная масса мало зависит от условий выделения и колеблется в широких пределах. В то же время, УКЛ, выделенные 90%-ной уксусной кислотой, отличаются повышенным содержанием высокомолекулярной фракции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зильберглейт М. А., Корнейчик Т. В., Резников М. В. Исследование процесса делигнификации древесины водными растворами уксусной кислоты. 8. Спектральный и термический анализ уксуснокислых лигнинов // Химия древесины. 1988. № 2. С. 56—61.
- № 2. С. 56—61. 2. Соколов О. М. Определение молекулярных масс лигнинов на ультрацентрифуге и методом гель-фильтрации. — Л., 1978. — 76 с.
- и методом гель-фильтрации. Л., 1978. 76 с. 3. Зильберглейт М. А., Корнейчик Т. В., Резников В. М. Исследование процесса делигнификации древесины водными растворами уксусной кислоты. 6. Физические свойства уксуснокислых лигнинов // Химия древесины. 1987. № 6. С. 21—27.