УДК 547.992.3

Б. В. Званский, В. М. Резников

ЦНИИ промышленности лубяных волокон Белорусский технологический институт им. С. М. Кирова

ИССЛЕДОВАНИЕ ПРЕПАРАТОВ ДИОКСАНЛИГНИНОВ ЛУБЯНОЙ И ДРЕВЕСНОЙ ЧАСТЕЙ СТЕБЛЕЙ ЛЬНА

Исследование лигнина льна представляет интерес в связи с проблемами получения и переработки льняного волокна. Изучение степени и характера одревеснения, а также строения и свойств лигнина льна может дать информацию, полезную для разработки промышленных способов получения льняного волокна и его облагораживания.

Некоторые исследователи уже давно отмечали связь качества волокна с размерами и формой волокнистых пучков и элементарных волокон, с одревеснением элементарных волокон и некоторыми другими

признаками [1-3].

Исследования, проведенные в ЦНИИЛВ, показали, что из всех анатомических признаков стебля льна в наибольшей мере на качество волокна и на ход технологических процессов влияют степень одревеснения волокон, определяемая флороглюциновым методом, и поперечные размеры элементарных волокон [4].

Ранее нами было показано, что в процессе получения волокна термохимическим способом происходит конденсация лигнина, вследствие чего снижается реакционная способность волокна, оно приобретает темный цвет, а это, в свою очередь, приводит к ухудшению белимости,

повышению его жесткости, понижению гибкости волокна [5].

К сожалению, число работ, посвященных изучению строения и свойств лигиинов льна пока невелико. Так, Менцелем [6] была обнаружена взаимосвязь между тониной волокон (из грубых, средних, тонких стеблей) и содержанием лигнина в них. Лубяная и древесная части льняного стебля заметно различаются по содержанию лигнина: в лубе 2,23—6,3% лигнина, негидролизуемого серной кислотой [7, 8], в древесной части 20—30% [7, 9]. Следует отметить, что данные о содержании лигнина, приводимые разными авторами, значительно различаются, что, очевидно, обусловлено различным исходным сырьем и разными методами определения лигнина.

Обычно для исследования лигнина льна используют главным образом препараты лигнина, полученные сернокислотными методами и

сильно измененные по сравнению с протолигнином.

В. И. Лебедева [10], изучавшая влияние белящих агентов на лигнин льняного волокна, выделила сернокислотным методом препараты лигнина из волокон, окисленных различными окислителями, определила в них содержание функциональных групп, элементный состав, сняла их ИК-спектры. Исходный лигнин, выделенный из льняного волокна, не обработанного белящими агентами, имел следующее содержание функциональных групп: метоксильных — 4,47%, гидроксильных — 6,5%, карбоксильных — 6,5%, карбоксильных — 7,25%. Элементный состав: содержание углерода — 58,34%, водорода — 6,4%.

Людтке [11] были сияты УФ-спектры в серной кислоте выделенных из льняного волокна препаратов лигнина (Π_a и Π_e) и проведено сравнение их со спектрами модельных соединений лигнина. Π_e — кислоторастворимый лигнин. Он был получен путем обработки волокна в те-

	Содержание функциональных групп, %*					Элементный состав, %				
Препарат	-OCH3	ш9°НО—	-ОНфенол	000-	нооо—	U	Н	N	Содержа- ние угле- водов, %	а при $\lambda = 280$ нм, л.г ⁻¹ . см ⁻¹
ДЛА древесины ДЛА луба	16,44 4,27	10,83 8,78	1,33 2,72	2,48 3,31	2,75 2,49	63,1 64,44	5,61 9,08	следы 2,47	3,72 5,02	22,0 17,05

^{*} Метоксильные группы определяли по Фибеку—Шваппаху, общие гидроксильные группы — ацетилированием по Верлею и Бёльзингу, карбоксильные и фенольные гидроксильные группы — хемосорбционным методом в модификации Кухаренко, карбонильные группы — методом оксимирования [15].

чение 42 ч 72%-ной H_2SO_4 при 2—4°C и последующего четырехчасового кипячения гидролизата, разбавленного до содержания кислоты 3%. Π_a получали, растворяя негидролизуемый остаток кипячением в 3%-ной H_2SO_4 и выдерживанием в течение 7—8 дней при частом встряхивании. Автор обнаружил сходство спектров Π_a , содержащего мало метоксильных групп и много фрагментов типа n-оксикоричного спирта, со спектрами n-оксибензальдегида. Π_a имеет нехарактерный для лигнинов спектр: в нем отсутствует ярко выраженный максимум, в диапазоне длин волн 270—280 нм спадающая кривая переходит в горизонтальную линию. Автор объясняет это плохой растворимостью или

трудной гидролизуемостью Π_a .

О строении лигнина часто судят по строению продуктов его деструкции. И. И. Карпунин [12] для получения информации о строении лигнина льна провел нитробензольное окисление льносоломы и идентифицировал 15 соединений, в том числе ванилин и сиреневый альдегид. Однако эти сведения трудно использовать для характеристики лигнина льна, так как стебли льна содержат лигнин двух видов — лигнин древесины и лигнин луба, которые различаются строением и должны исследоваться раздельно. Нами проведено нитробензольное окисление лубяной и древесной частей стеблей льна, методами ГЖХ и тонкослойной хроматографии идентифицированы продукты окисления [13]. В продуктах нитробензольного окисления древесной части определены ванилин, сиреневый альдегид и ацетованилон, в продуктах нитробензольного окисления луба помимо названных альдегидов найден *п*-оксибензальдегид.

Таким образом, сведения о химическом составе лигнинов льна не-

достаточны и противоречивы.

Целью данной работы было исследование препаратов лигнина лубяной и древесной частей стеблей льна, наиболее близких к природному лигнину. С этой целью были выделены препараты диоксанлигнинов в атмосфере азота (ДЛА). Как показали исследования [14], такие препараты по фракционному и функциональному составу весьма близки к ЛМР и поэтому могут быть использованы в качестве модели протолигнина. Исследуемые препараты ДЛА выделены из лубяной и древесной частей стеблей льна сорта Л-1120. Луб от древесины отделяли вручную, полученные образцы измельчали, экстрагировали спиртобензольной смесью в течение 8 ч, после чего выделяли препараты ДЛА.

Выход препаратов из луба составил 0,495%, из древесины 4,325% в пересчете на органическую массу. Препарат лигнина древесины представляет собой светлый порошок песочного цвета, препарат лигнина

луба — порошок коричневого цвета.

АМИНОКИСЛОТНЫЙ СОСТАВ ГИДРОЛИЗАТА ПЛА ЛУБА

	Содер	Содержание				
Аминокислота	амино- кислоты, % к ДЛА	азота в амино- кисло- тах, % к исх. ДЛА				
Лизин	0,323	0,049				
Гистидин	0,126	0.025				
Аргинин	0,214	0,057				
Аспарагиновая к-та	0,331	0,035				
Треонин	0,215	0,025				
Серин	0,229	0,03				
Глутаминовая к-та	0,455	0,043				
Пролин	0,192	0,023				
Глицин	0,216	0,04				
Аланин	0,281	0,044				
Валин	0,271	0,032				
Метионин	Следы	Следы				
Изолейцин	0,269	0,029				
Лейцин	0,559	0,06				
Тирозин	0,172	0,013				
Фенилаланин	0,371	0,031				
Итого	4,223	0,492				

полученных препаратах ДЛА по известным метоликам определяли содержание функциональных групп [15], так же устанавливали элементный состав препаратов и содержание в них углеводов. Общий азот в выделенных препаратах, а также в остатке после гидролиза определяли на CHN-анализаторе. Аминокислоты и аммиак в гидролизате ДЛА определяли методом ионообменной хроматографии на аминокислотном анализаторе «Мультихром» фирмы Бекман¹. Гидролиз проводили в 6 н. НС1 при температуре 105° С в течение 16 ч (соотношение ДЛА — 6 н. НС1 1:100). Результаты анализов представлены в табл. 1 и 2.

Как показывают результаты экспериментов, препараты ДЛА, выделенные из различных анатомических частей льняного стебля, существенно отличаются

друг от друга по содержанию функциональных групп. Так, препарат ДЛА луба содержит 4,27% метоксильных групп, тогда как содержание этих групп в препарате ДЛА древесины льняного стебля составляет 16,44%. Это различие объясняется присутствием в лигнине лубяной части стебля льна неметоксилированных фенилпропановых структур типа *п*-оксифенилпропана [13].

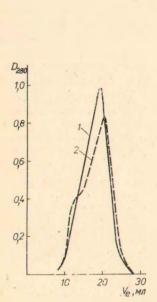


Рис. 1. Гель-хроматограммы препаратов ДЛА древесной (1) и лубяной (2) частей стеблей льна.

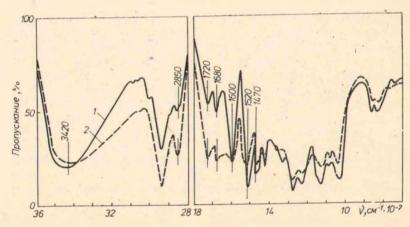
Рис. 2. УФ-спектры препаратов ДЛА древесной (1) и лубяной (2) частей стеблей льна.

¹ Анализ аминокислотного состава ДЛА луба был проведен сотрудниками аналитической лаборатории ВНИИсинтезбелок, за что авторы приносят им свою признательность.

МОЛЕКУЛЯРНАЯ МАССА И ПОЛИДИСПЕРС-НОСТЬ ПРЕПАРАТОВ ДЛА ЛЬНА

Препарат	\overline{M}_w	\overline{M}_n	$\overline{M}_w/\overline{M}_n$
ДЛА древесины	3880	2840	1,37
ДЛА луба	3890	2630	1,48

При определении элементного состава в препарате ДЛА луба было обнаружено 2,47% азота. В гидролизате ДЛА луба присутствуют аминокислоты в количестве 4,223%, что в пересчете на азот составляет 0,492%. Количество азота аммиака в гидролизате невелико — приблизительно 0,12%.


Содержание азота в остатке после гидролиза 0,8%. При сведении баланса по азоту оказалось, что нами идентифицировано лишь 50% азота, что, очевидно, связано с присутствием в препарате белка. Остальная часть азота, вероятно, входит в состав трудногидролизуемых соединений или приходится на долю тех веществ, которые в настоящей работе не определялись. Изучение азотсодержащих веществ лубяной части льняного стебля, их взаимосвязи с лигнином представляет особый интерес и будет являться предметом дальнейших исследований.

Для определения ММР препараты ДЛА луба и древесины стеблей льна подвергали гель-фильтрации на сефадексе G-75 по методике [16]. Среднемассовая, среднечисловая молекулярная масса и полидисперсность $(\overline{M}_w, \overline{M}_n, \overline{M}_w/\overline{M}_n)$ были рассчитаны по кривым ММР (рис. 1). По характеру ММР препараты ДЛА лубяной части и древесины стебля льна различны. Так, ДЛА луба имеет более высокую степень полидисперсности, кривая гель-фильтрации несколько смещена к началу координат, что говорит о повышенном содержании в нем высокомолекулярной фракции, при этом среднемассовая молекулярная масса этого препарата близка к среднемассовой молекулярной массе ДЛА древесины (табл. 3).

УФ-спектры препаратов ДЛА лубяной и древесной части стеблей льна имеют типичный лигнинный характер. В спектрах обоих препаратов имеется характерный максимум поглощения при $\lambda=280$ нм (рис. 2). В УФ-спектре ДЛА луба наблюдается более значительное поглощение в области 300-350 нм, что указывает на более высокое содержание в лигнине луба α -карбонильных групп и двойных связей, сопряженных

с ароматическим кольцом.

В ИК-спектрах выделенных препаратов ДЛА льна (рис. 3) имеется интенсивная и широкая полоса при $3420~{\rm cm^{-1}}$, обусловленная валентными колебаниями v(O-H) спиртовых и фенольных гидроксилов, включенных во внутримолекулярную водородную связь. Полоса около $2850~{\rm cm^{-1}}$ обусловлена валентными симметричными колебаниями $v_s(C-H)$. В спектре ДЛА луба эта полоса значительно интенсивнее,

Puc. 3. ИК-спектры препаратов ДЛА древесной (1) и лубяной (2) частей стеблей льна.

чем в спектре ПЛА превесины. В ИК-спектрах исследуемых препаратов наблюдается интенсивное поглощение при 1600, 1520 и 1470 см-1. Поглошение в этих областях характеризуется скелетными колебаниями ароматического кольца, что, в свою очередь, свидетельствует о лигнинной природе выделенных препаратов. В ИК-спектре ДЛА луба наблюдаются значительно более интенсивные полосы поглощения при 1720 и 1680 см-1, чем в спектре ДЛА древесины. Поглощение в этих областях приписывается валентным связям $\nu(C=0)$ в β -положении к ароматическому кольцу и карбоксильным группам, что согласуется с данными функционального анализа (см. табл. 1).

Полученные результаты показывают, что лигнин лубяной части льняного стебля близок по строению к лигнинам низкоорганизованных

растений [17].

СПИСОК ЛИТЕРАТУРЫ

1. Яковлев М. С. Анатомический метод в селекции льна. — Приложение к трудам

по прикладной ботанике, генетике и селекции, 1935, вып. 3, № 74, с. 53—59. 2. Магитт М. С. Микроскопия лубяных растений. 3-е изд. М.—Л., 1938. 36 с. 3. Магитт М. С. Основы технической анатомии лубяных культур. 4-е изд. М., 1948.

4. Ордина Н. А. Оценка качества волокна в льняных стеблях по анатомическим при-

знакам. — Лен и конопля, 1960, № 6, с. 20-22.

5. Званский Б. В., Зильберглейт М. А., Резников В. М. Изучение конденсационных превращений лигнина лубяной части стебля льна в процессе получения льняного волокна термохимическим способом. — Химия древесины, 1981, № 3, с. 86—89.

волокна термохимическим способом. — Химия древесины, 1981, № 3, с. 86—89. 6. Menzel K.-C. Beitrag zum Ligninproblem bei Flachs und Hanssacrn. — Faserforsch. und Textiltechn., 1961, Bd. 12, H. 1, S. 18—22. 7. Сивцов А. Н., Соболев М. А., Каюков С. М. Промышленные методы получения тресты путем запаривания с применением конвейеризации. — Науч.-исслед. тр. Костромск. текстильн. ин-та, 1947, вып. 5, с. 5—56. 8. Ракитина В. М., Фридлянд Г. И., Волчкова О. Н. Влияние химических и струк-

турных превращений целлюлозы и лигнина паренцового волокна на его отбеливаемость. — В кн.: Вопросы технологии промышленности лубяных волокон. М.,

1978, с. 44—47.

9. Скриган А. И. Ресурсы и химическая характеристика льняной костры и другого пентозансодержащего сырья в Белорусской ССР. — В кн.: Ресурсы пентозансодержащего сырья в СССР. Рига, 1960, с. 73—82.

10. Лебедева В. И. Влияние белящих агентов на лигнин льна. — Изв. вузов. Технол.

текстильн. пром-сти, 1969, № 1, с. 113—117.

11. Lüdtke M. Die Ultraviolettabsorption der Bastfaser Lignine und einiger Lignin-spaltprodukte. — Holzforschung, 1962, Bd. 16, H. 5, S. 129—134.

12. Карпунин И. И. Нитробензольное окисление лигнина льносоломы. — Журн. прикл.

химии, 1978, т. 51, № 10, с. 2387—2389.

13. Званский Б. В., Зильберглейт М. А., Резников В. М. Идентификация продуктов нитробензольного окисления лигнинов лубяной и древесной частей стеблей льна методами тонкослойной и газожидкостной хроматографии. — Химия древесины, 1981, № 3, с. 81—85.

14. Алексеев А. Д., Матусевич Л. Г., Резников В. М. Еще раз к вопросу о выборе

препарата — модели протолигнина. — Химия древесины, 1971, вып. 9, с. 57-63

(Рига). 15. Закис Г. Ф., Можейко Л. Н., Тельшева Г. М. Методы определения функциональ-

ных групп лигнина. Рига, 1975. 174 с. 16. Алексеев А. Д., Резников В. М., Сенько И. В. Кинетика и механизм образования поперечных связей при кислотной инактивации лигнина. — Химия древесины, 1969, вып. 3, с. 91—99 (Рига).
17. Михасева М. Ф. Химическое исследование лигнинов филогенетического ряда тра-

вянистых растений. Дис. на соиск. учен. степ. канд. хим. наук. Минск, 1980. 111 c.

Поступило 16 XII 1981