вып. В.О. Стойков; студ. Е.С. Ковалевская Науч. рук. доц. к.т.н. Ю.А. Климош (кафедра технологии стекла и керамики, БГТУ)

ПОЛУЧЕНИЕ РАЗДЕЛИТЕЛЬНЫХ ПОКРЫТИЙИ ЖАРОУПОРНЫХ БЕЗОБЖИГОВЫХ ИЗДЕЛИЙ НА ОСНОВЕ ГРАНИТОИДНЫХ ОТСЕВОВ, БАЗАЛЬТОВ И ФОСФАТНОЙ СВЯЗКИ

Метод литья в кокиль получил широкое применение в машиностроении при производстве деталей высокой точности для двигателей.

Процесс литья в кокиль начинается с обработки его внутренней поверхности разделительными покрытиями (так называемыми красками),основным назначением которых является предотвращение взаимодействия расплавленного металла с материалом форм. Для этой цели в состав покрытия вводят вещества повышенной огнеупорности на различных связующих. В литейной практике, в основном, используют разделительные покрытия, представляющие собой суспензии, включающие огнеупорный наполнитель (основу), связующее, суспензирующее вещество, растворитель (воду или органическую жидкость) и вспомогательные компоненты (структурирующие добавки, смачиватели, антисептики). При разработке составов разделительных покрытий особое внимание уделяется фосфатным связкам, поэтому нами было исалюмофосфатное связующее (АФС), a наполнителя -компоненты, химический состав которых приведен в таблице 1.

Таблица 1 – Химический состав наполнителя

Исследуемая	Содержание оксидов,%									
валовая проба	SiO ₂	Al ₂ O ₃	CaO	MgO	FeO+ Fe ₂ O ₃	K ₂ O+Na ₂ O	TiO ₂	P ₂ O ₅	MnO	ппп
Гранитоиды	61,64	14,86	4,38	3,32	8,94	2,52	0,93	0,35	0,19	2,87
Базальт	46,11	11,49	5,0	7,87	14,0	4,30	1,74	0,31	_	9,18

Качественный состав сырьевых композиций для синтеза разделительных покрытий и жароупорных безобжиговых изделий, а также основные технологические стадии их получения приведены в таблице 2.

Экспериментальными исследованиями подтверждена целесообразность использования для защиты поверхности стальных кокилей при производстве алюминиевых отливок разделительных покрытий следую-

щего качественного состава: связующее — АФС; наполнитель — гранитоидные (некондиционная фракция при производстве дорожного щебня РУПП «Гранит»)и базальтовые породы; растворитель — вода, а также установлено оптимальное количественное содержание вышеуказанных ингредиентов для получения разделительных покрытий с удовлетворительным комплексом требуемых свойств.

Таблица 2 – Основные технологические стадии получения материалов

		, ,			
Синтезируемый	Компоненты сырьевой ком-	Основные технологические ста-			
материал	позиции	дии получения			
Разделительные	Гранитоиды или базальт,	Синтез алюмофосфатного свя-			
покрытия	алюмофосфатноесвязующее,	зующего → подготовка наполни-			
	глина, вода	теля \rightarrow приготовление суспензии			
		→ нанесение на стальную под-			
		ложку → литье алюминиевых			
		сплавов			
Жароупорные	Гранитоиды или базальт,	Приготовление композиции «на-			
безобжиговые	алюмофосфатноесвязующее,	полнитель-связующее» → полу-			
изделия	вода	сухое прессование → сушка			

Установлено, что наиболее благоприятным соотношением «наполнитель / АФС» является 1,9:1–2,2:1, а экспериментально определенная оптимальная влажность суспензии составляет 50–60 %.

Основным критерием определения пригодности покрытия для использования в качестве защиты кокилей от пригара является отсутствие прилипания охлажденного алюминиевого расплава к его поверхности. Предварительная подготовка заготовок из стали Ст 45 включала стадии обезжиривания и травления в растворе ортофосфорной кислоты. Опыты показали, что нанесение покрытия на непротравленную поверхность металла приводило к образованию пористой текстуры и, соответственно, недостаточной прочности сцепления с матрицей. Были проведены испытания стальных заготовок на контакт с расплавом алюминия.

Установлено, что образец из расплава алюминия, отлитый на обработанную разделительным покрытием поверхность стальной заготовки, легко отделялся от нее, в то время как образец, отлитый на необработанную поверхность заготовки, довольно прочно держался (пригорал) и даже при приложении усилия не отделялся от подложки.

Результаты лабораторных и заводских (ОАО «Минский моторный завод») испытаний показали, что функциональные свойства разделитель-

ных покрытий сохранялись при многократной отливке расплавов на стальную подложку.

Актуальность получения футеровочных тугоплавких и огнеупорных материалов обусловлена непрерывно возрастающей потребностью в недорогостоящих качественных жароупорных изделиях, предназначенных для футеровки обжиговых вагонеток и тепловых агрегатов. Переход от импорта к собственному производству жароупорных изделий позволит решить данную проблему, а также расширить ассортимент выпускаемой продукции предприятий керамической отрасли.

Для производства безобжиговых тугоплавких изделий имеется необходимое отечественное минеральное сырье и компоненты для связующего.

Разработанные жароупорные безобжиговые изделия синтезированы из композиций на основе гранитоидных отсевов или базальтов и фосфатного связующего. Они могут эксплуатироваться при температурах до $1100~^{\circ}$ С в течение длительного срока.

Технические характеристики разработанных жароупорных безобжиговых изделий приведены в таблице 3.

 Таблица 3 – Технические характеристики жароупорных безобжиговых изделий

Наименование показателя	Значение показателя
Механическая прочность при сжатии, МПа	18-22
Кажущаяся плотность, кг/м ³	2060-2130
Водопоглощение, %	9,5-10,5
Огнеупорность, °С	1300
Термостойкость, циклов (850 °С/вода)	22-26

По показателям физико-механических и термических свойств разработанные жароупорные изделия конкурентоспособны с зарубежнымианалогами, не содержат импортных и дорогостоящих компонентов и соответствуют требованиям СТБ 1409-2003.

Важным положительным экономическим фактором является доступность и невысокая стоимость рекомендуемых для использования в качестве наполнителей природных материалов (гранитоидных и базальтовых пород), а также простота изготовления АФС и наличие соответствующего оборудования.

Разработанные составы разделительных покрытий рекомендованы к апробации в цехе алюминиевого литья ОАО «Минский моторный завод» при изготовлении алюминиевых отливок литьем в кокиль. Безобжиговые жароупорные изделия рекомендованы для использования в качестве футеровочных материалов обжиговых вагонеток туннельных печей.