ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ ВіО1.5-СаО-СоО_у

© А. И. Клындюк, ¹^a Н. С. Красуцкая, ¹ И. В. Мацукевич², Е. А. Тугова, ³ Е. А. Чижова¹

1 Белорусский государственный технологический университет

Республика Беларусь, 220006, Минск, ул. Свердлова, 13А; e-mail: klyndyuk@belstu.by ²Институт общей и неорганической химии Национальной академии наук Беларуси, Минск ³Физико-технический институт имени А. Ф. Иоффе Российской академии наук, Санкт-Петербург

Изучены фазовые равновесия в субсолидусной области квазитройной системы $BiO_{1.5}$ —CaO—CoO_y на воздухе. Установлено образование одного тройного оксида $Bi_2Ca_2Co_{1.7}O_x$, а также ограниченного ряда твердых растворов (Ca,Bi)₃Co₄O_{9+ δ}. Проведена триангуляция системы $BiO_{1.5}$ —CaO—CoO_y на воздухе при 973 К.

Ключевые слова: система BiO_{1.5}-CaO-CoO_y, Bi₂Ca₂Co_{1.7}O_x, диаграмма состояния, фазовые равновесия.

Перспективными компонентами р-ветвей высокотемпературных термоэлектрогенераторов, в которых происходит непосредственное преобразование высокопотенциального тепла в электрическую энергию, являются слоистые кобальтиты кальция Са₃Со₄О_{9+δ} и висмута-кальция Ві₂Са₂Со_{1.7}О_x [1-3], причем функциональные характеристики висмутзамещенных твердых растворов (Са,Ві)₃Со₄О_{9+δ} существенно лучше, чем у базовой фазы Са₃Со₄О₉₊₆ [4-7]. Сведения о фазовых равновесиях в квазитройной системе BiO1 5-CaO-CoO₂, в которой образуются эти соединения, отсутствуют, что затрудняет разработку научно обоснованных методов получения гомогенной и композиционной термоэлектрической керамики на основе слоистых кобальтитов висмута-кальция. В связи с этим нами исследованы фазовые равновесия в субсолидусной области системы ВіО_{1,5}-СаО-СоО_у на воздухе.

Фазовые равновесия в квазибинарных системах ВіO_{1.5}–CaO, ВіO_{1.5}–CoO_{ν} и CaO–CoO_{ν}, граничащих с системой ВіO_{1.5}–CaO–CoO_{ν}, неоднократно исследовались достаточно подробно [8–15]. В системе ВіO_{1.5}–CaO образуется четыре двойных оксида Ca₂Bi₂O₅, Ca₄Bi₆O₁₃, CaBi₂O₄ и Ca₅Bi₁₄O₂₆, которые на воздухе устойчивы до температур 1198, 1128, 1051 и 1005 К соответственно [8], а также существуют три области твердых растворов β -(Bi,Ca)O_{1.5} (ромбоэдрическая структура), γ -(Bi,Ca)O_{1.5} (объемноцентрированная кубическая структура) и δ -(Bi,Ca)O_{1.5}

(гранецентрированная кубическая структура). По данным авторов [9], в системе ВіО15-СаО образуются твердые растворы четырех типов: α₁-(Bi,Ca)O_{1.5} кубической структуры, β-(Ві,Са)О1,5 ромбоэдрической структуры, высокотемпературный у-(Bi,Ca)O1 5 и δ-(Ві,Са)О_{1.5} гексагональной структуры, а также три двойных оксида Bi₂CaO₄, Bi₁₀Ca₇O₂₂ и Bi₆Ca₇O₁₆, инконгруэнтно плавящиеся на воздухе при 1073, 1163 и 1193 К соответственно. В работе [10] было оптимизировано термодинамическое описание системы ВіО1 5-СаО и показано, что в ней образуются четыре двойных оксида постоянного состава: Ві2Са2О5, Ві₆Са₄О₁₃, Ві₂СаО₄ и Ві₁₄Са₅О₂₆, температура инконгруэнтного разложения которых увеличивается с возрастанием доли оксида кальция в них, - а также твердые растворы трех типов: β-(Bi,Ca)O₁₅ (ромбоэдрический), ү-(Bi,Ca)O15 (объемноцентрированная кубическая структура) и δ-(Bi,Ca)O_{1.5} (кубический).

В системе $BiO_{1.5}$ —CoO_y образуется только один двойной оксид $Bi_{24}Co_2O_{39}$ со структурой силленита, которая характеризуется ненулевой областью гомогенности по катионам $Bi_{26-x}Co_xO_{39}$ (x 0.9–2.0) [11, 12]. Силленит $Bi_{26-x}Co_xO_{39}$ конгруэнтно плавится при 1043 [11], 1045 K [12] (для x 1.75).

Фазовые равновесия в системе $CaO-CoO_{y}$ впервые были изучены в работе [13]. В этой системе образуется два двойных оксида $Ca_{3}Co_{2}O_{6}$ и $Ca_{3}Co_{4}O_{9+\delta}$, которые на воздухе перитектоидно распадаются

Поступило в Редакцию 8 февраля 2018 г.

Фазовые равновесия в квазитройной системе BiO_{1.5}–CaO– CoO_y на воздухе при 973 К. Фазовые равновесия в граничных квазибинарных системах BiO_{1.5}–CaO, CaO–CoO_y и BiO_{1.5}–CoO_y даны в соответствии с результатами работ [10, 12, 13]. Области двухфазного равновесия выделены нодами.

при 1299 и 1199 К соответственно, а также (при T > 1173 K) твердые растворы (Ca,Co)O, (Co,Ca)O, область гомогенности которых достигает максимума при 1623 К. Эти результаты были впоследствии уточнены [14, 15]: температура перитектоидного разложения фаз Са₃Со₂О₆ и Са₃Со₄О₉₊₈ возрастает с увеличением $p(O_2)$ и составляет соответственно 1313±7 и 1222±13 К на воздухе [p(O₂) 2.1-10⁴ Па] и 1386±10 и 1275±4 К в кислороде $[p(O_2) 1 \cdot 10^5 \Pi a]$, а двойной оксид Ca₃Co₄O₉₊₆ характеризуется ненулевой областью гомогенности по катионам, и его состав может изменяться в пределах Са₃Со_{3.80}О9+6- $Ca_3Co_{4,0}O_{9+\delta}$, что согласуется с экспериментом [16], в котором было установлено, что однофазный двойной оксид Са₃Со₄О₉₊₈ образуется в интервале составов Са₃Со_{3.95}О₉₊₈-Са₃Со_{4.05}О₉₊₈. В системе СаО-СоО, идентифицирован еще один двойной оксид CaCo₂O₄, устойчивый на воздухе в узком интервале температур (873-923 К) [17].

Результаты нашего исследования фазовых равновесий в субсолидусной области квазитройной системы $BiO_{1,5}$ —CaO—CoO_y на воздухе при 973 К представлены на рисунке в виде изотермического сечения фазовой диаграммы $BiO_{1,5}$ —CaO—CoO_y. В системе $BiO_{1,5}$ —CaO—CoO_y установлено образование одного тройного оксида — слоистого кобальтита висмута-кальция $Bi_2Ca_2Co_{1,7}O_2$, а также ограниченного ряда твердых растворов (Ca,Bi)₃Co₄O_{9+δ}, образующихся при замещении до 10 мол% кальция висмутом.

В некоторых работах слоистому кобальтиту висмута-кальция приписывают состав, заметно отличающийся от $Bi_2Ca_2Co_{1.7}O_x$: $Bi_{1.7}Ca_2Co_{1.7}O_x$ [18], $Bi_2Ca_2Co_2O_x$ [19,20], $Bi_{1.7}Ca_2Co_2O_x$ [21], $Bi_{2.5}Ca_{2.5}Co_2O_x = Bi_2Ca_2Co_{1.6}O_x$ [22] и даже $Bi_2Ca_2CoO_x$ [23]. Учитывая полученные нами результаты, можно предположить, что описанная керамика [18–23] является либо гетерогенной, либо сильно дефектной.

Как видно из рисунка, доминирующей фазой в системе $BiO_{1.5}$ —CaO—CoO_y является слоистый кобальтит висмута-кальция $Bi_2Ca_2Co_{1.7}O_x$, который может находиться в равновесии с одной из фаз CaO, $Ca_3Co_2O_6$, $(Ca,Bi)_3Co_4O_{9+\delta}$, CoO_y , $Bi_{26-x}Co_xO_{39}$, δ -(Bi,Ca)O_{1.5}, β -(Bi,Ca)O_{1.5}, $Bi_{14}Ca_5O_{26}$. Bi_2CaO_4 , $Bi_6Ca_4O_{13}$ и $Bi_2Ca_2O_5$; твердые растворы (Ca,Bi)_3Co_4O_{9+\delta} могут находиться в равновесии с одной из фаз Bi_2Ca_2Co_{1.7}O_x и CoO_y.

На воздухе при 973 К треугольник ВіО_{1.5}-СаО-СоО, состоит из 17 областей, в 12 из которых в равновесии находятся три фазы [Bi₂Ca₂O₅, CaO и Ві₂Са₂Со_{1.7}О_x; СаО, Са₃Со₂О₆ и Ві₂Са₂Со_{1.7}О_x; Са₃Со₂О₆, Са₃Со₄О_{9+δ} и Ві₂Са₂Со_{1.7}О_x; Са_{2.7}Ві_{0.3}Со₄О_{9+δ}, СоО_v и Bi₂Ca₂Co_{1.7}O_r; CoO_v, Bi₂₄Co₂O₃₉ и Bi₂Ca₂Co_{1.7}O_r; Ві2Са2Со17Ох, Ві251Со09О39 и δ-(Ві,Са)О15; α-ВіО15, Ві25,1С00,9О39 и δ-(Ві,Са)О1,5; Ві2Са2С01,7Ох, δ-(Bi,Ca)O_{1.5} и β-(Bi,Ca)O_{1.5}; Bi₂Ca₂Co_{1.7}O_x, β-(Bi,Ca)O_{1.5} и Bi₁₄Ca₅O₂₆; Bi₂Ca₂Co_{1.7}O_x, Bi₁₄Ca₅O₂₆ и Bi₂CaO₄; Bi₂Ca₂Co_{1.7}O_x, Bi₂CaO₄ и Bi₆Ca₄O₁₃; Bi₂Ca₂Co_{1.7}O_x, Ві₆Са₄О₁₃ и Ві₂Са₂О₅], а в 5 областях – 2 фазы [Bi₂Ca₂Co_{1.7}O_x и твердый раствор переменного состава (Са,Ві)₃Со₄О₉₊₆; твердый раствор переменного состава (Ca,Bi)₃Co₄O₉₊₆ и CoO_v; Bi₂Ca₂Co_{1.7}O_x и силленит переменного состава Bi26-xCoxO39; Bi2Ca2Co1.7Ox и твердый раствор переменного состава б-(Bi,Ca)O₁₅, Ві2Са2Со17О, и твердый раствор переменного состава β -(Bi,Ca)O_{1.5}].

При проведении триангуляции системы BiO_{1.5}— CaO–CoO₂ мы не принимали во внимание, что слоистый кобальтит кальция Ca₃Co₄O_{9+δ} характеризуется ненулевой областью гомогенности по катионам [14–16], а также возможность образования комплексно замещенных твердых растворов, например (Ca,Bi)₃(Co,Bi)₄O_{9+δ}, за счет частичного замещения ионов кобальта ионами висмута Bi⁵⁺→Co⁵⁺ [7]. Для учета отмеченных фактов необходимо проведение более детальных исследований, что и планируется проделать в будущем.

Экспериментальная часть

Образцы для исследования системы $BiO_{1.5}$ —CaO— CoO_y получали твердофазным методом из Bi_2O_3 (XЧ), CaCO₃ (ЧДА) и Co₃O₄ (Ч), которые смешивали в заданных соотношениях при помощи мельнипы Pulverizette 6.0 фирмы Fritsch (материал тиглей и мелющих шаров – ZrO_2), прессовали в таблетки и отжигали на воздухе [$p(O_2) \ 2.1 \cdot 10^4 \ \Pi a$] в течение 30–50 ч при 973–1193 К [24–26] с двумя промежуточными перетираниями. Для отдельных составов режим термообработки подбирали экспериментально таким образом, чтобы исключить появление жидкой фазы. На заключительной стадии образцы отжигали 5 ч при 973 К на воздухе, после чего подвергали закалке.

Фазовый состав полученных образцов контролировали методом рентгенофазового анализа, дифрактометр Bruker D8 XRD Advance (Cu K_{α} -излучение, 1.5406 Å, Ni-фильтр, метод порошка). Для идентификации фаз полученные рентгеновские дифрактограммы сравнивали с базой данных PDF–2012. Элементный состав и микроструктуру образцов нзучали с помощью сканирующей электронной микроскопии и энергодисперсионного рентгеноспектрального микроанализа на сканирующем электронном микроскопе Fei Company Quanta 200, оснащенном приставкой рентгеновского микроанализа EDAX, а также на сканирующем электронном микроскопе JSM–5610 LV с системой химического анализа EDX JED-220.

Работа выполнена в рамках Государственной программы научных исследований «Физическое материаловедение, новые материалы и технологии» подпрограмма «Материаловедение и технологии материалов», задание 1.26) и госзадания № 9.10 Министерства образования и науки РФ.

Список литературы

- Oxide Thermoelectrics. Research Signpost / Ed. K. Koumoto,
 I. Terasaki, N. Murayama, Trivandrum, India, Research Signpost, 2002. 255 p.
- Fergus J.W. // J. Eur. Ceram. Soc. 2012. Vol. 32. P. 525. doi 10.1016/j.jeurceramsoc.2011.10.007.
- Sotelo A., Rasekh Sh., Madre M.A., Guilmeau E., Marinel S., Diez J.C. // J. Eur. Ceram. Soc. 2011. Vol. 31. P. 1763. doi 10.1016/j.jeurceramsoc.2011.03.008.
- Li S., Funahashi R., Matsubara I., Satoshi U., Yamada H. // Chem. Mater. 2000. Vol. 12. P. 2424. doi 10.1021/cm000132r.
- Park J.W., Kwak D.H., Yoon S.H., Choi S.C. // J. Ceram. Soc. Japan. 2009. Vol. 117. N 5. P. 643.
- Мацукевич И.В., Клындюк А.И., Тугова Е.А., Томкович М.В., Красуцкая Н.С., Гусаров В.В. / ЖПХ. 2015. Т. 88. Вып. 8. С. 1117; Matsukevich I.V., Klyndyuk A.I., Tugova E.A., Tomkovich M.V., Krasutskaya N.S., Gusarov V.V. // Russ. J. Appl. Chem. 2015. Vol. 88. N 8. P. 1241. doi 10.1134/S1070427215080030.

- Марукевич И.В., Клындюк А.И., Тугова Е.А., Коваленко А.Н., Марова А.А., Красуцкая Н.С. // Неорг. матер. 2016. Т. 52.
 № 6. С. 644; Matsukevich I.V., Klyndyuk A.I., Tugova E.A., Kovalenko A.N., Marova A.A., Krasutskaya N.S. // Inorg. Mater. 2016. Vol. 52. N 6. P. 593. doi 10.1134/S0020168516060091.
- Roth R.S., Hwang N.M., Rawn C.J., Burton B.P., Ritter J.J. // J. Am. Ceram. Soc. 1991. Vol. 74. N 9. P. 2148. doi 10.1111/ j.1151-2916.1991.tb08274.x.
- Vstavskaya E.Yu., Zuev A.Yu., Cherepanov V.A. // Mat. Res. Bull. 1994. Vol. 29. N 12. P. 1233. doi 10.1016/0025-5408(94) 90146-5.
- Hallstedt B., Gauckler L.J. // Calphad. 2003. Vol. 27. N 2.
 P. 177. doi 10.1016/S0364-5916(03)00050-6.
- Jankovsky O., Sedmidubsky D., Sofer Z., Capek J., Ruzicka K. // Ceramics – Silikaty. 2013. Vol. 57. N 2. P. 83.
- Jankovský O., Sedmidubský D., Sofer Z. // J. Eur. Ceram. Soc. 2013. Vol. 33. N 13–14. P. 2699. doi 10.1016/j.jeurceramsoc. 2013.04.035.
- Woermann E., Muan A. // J. Inorg. Nucl. Chem. 1970. Vol. 32. P. 1455.
- Jankovsky O., Sedmidubsky D., Sofer Z., Simek P., Hejtmanek J. II Ceramics – Silikaty. 2012. Vol. 56. N 2. P. 139.
- Sedmidubský D., Jakes V., Jankovský O., Leitner J., Sofer Z., Hejtmanek J. // J. Solid State Chem. 2012. Vol. 194. P. 199. doi 10.1016/j.jssc.2012.05.014.
- Zhou X.-D., Pederson L.-R., Thomsen E., Nie Z., Coffey G. II Electrochem. Solid-State Lett. 2009. Vol. 12. N 2. P. F1. doi 10.1149/1.3039948.
- Tran H., Mehta T., Zeller M., Jarman R.H. // Mat. Res. Bull. 2013. Vol. 48. P. 2450. doi 10.1016/j.materresbull.2013.02.060.
- Muguerra H., Rivas-Murias B., Traianidis M., Henrist C., Vertruyen B., Cloots R. // J. Solid State Chem. 2010. Vol. 183. P. 1252. doi 10.1016/j.jssc.2010.03.030.
- 19. Sutiahja I.M. // Indonesian J. Phys. 2011. Vol. 22. N 3. P. 97.
- Iguchi E., Katoh S., Nakatsugawa H., Munakata F. // J. Solid State Chem. 2002. Vol. 167. P. 472. doi 10.1006/jssc.2002. 9664.
- Maignan A., Pelloquin D., Hebert S., Klein Y., Hervieu M. // Bol. Soc. Esp. Ceram. V. 2006. Vol. 45. N 3. P. 122.
- Guilmeau E., Chateigner D. // J. Mater. Res. 2005. Vol. 20. N 4. P. 1002. doi 10.1557/JMR.2005.0131.
- Anis-ur-Rehman M., Abbasi S.H., Fatima-tur-Zahra // J. Supercond. Nov. Magn. 2015. Vol. 28. P. 1029. doi 10.1007/s10948-014-2786-7.
- 24. Гусаров В.В. // ЖОХ. 1997. Т. 67. Вып. 12. С. 1959; Gusarov V.V. // Russ. J. Gen. Chem. 1997. Vol. 67. N 12. P. 1846.
- Гусаров В.В., Суворов С.А. // ЖПХ. 1993. Т. 66. Вып. 3.
 С. 525; Gusarov V.V., Suvorov S.A. // Russ. J. Appl. Chem. 1993. Vol. 66. N 3. P. 1529.
- Kovalenko A.N. // Nanosystems: Phys. Chem. Math. 2016. N 7
 (6). P. 941. doi 10.17586/2220-8054-2016-7-6-941-970.