обусловлена наличием жестких направленных ковалентных связей, которые ограничивают подвижность дислокаций.

Основой получения СТМ являются необратимые фазовые превращения графита и графитоподобного нитрида бора при высоких давлениях, область образования которых определяется фазовой Р—Т диаграммой углерода и нитрида бора.

На примере кубического нитрида бора (КНБ) рассмотрены особенности процессов кристаллизации СТМ и их спекания при высоких давлениях и температурах. Наблюдаемые кинетические изменения скоростей образования и роста критических зародышей связываются с изменением пресыщения и вязкости кристаллизационного расплава, а особенности спекания СТМ при высоком давлении — с образованием межзеренных связей за счет пластической деформации, последеформационного возврата и отжига низкоэнергичных неравновесных дефектов.

Сделан вывод, что вакансии в решетке КНБ связаны в комплексы типа вакансия—междоузлие, которые являются доминирующими точечными дефектами в этом материале.

Изменение физических характеристик КНБ от внешних воздействий связывается с различным характером дефектообразования на отдельных участках температурного отжига либо облучения.

КОМПОЗИЦИОННЫЕ СТЕКЛОКЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

Н.М.Бобкова, С.Е.Баранцева, О.Н.Вьяль Белорусский государственный технологический университет, г.Минск

Целью настоящего исследования являлась разработка физико— химических основ получения композиционных стеклокерамических материалов с повышенной износостойкостью на базе технических оксидов алюминия, хрома и ситаллизирующихся стекол бесщелочной системы SiO2 — TiO2 — AL2O3 — CaO — BaO — B2O3.

В результате проведенных исследований отработаны и оптимизированы технологические параметры изготовления стеклокерамических композиционных материалов с различными добавками.

Информация, полученная методами градиентной кристаллизации и ДТА, позволила сделать заключение, что добавки значительного влияния на процесс кристаллизации материалов не оказывают, изменяя лишь их температурные характеристики. Причем, температура ситал-

лизации стекла в композиции в присутствии добавок Cr2O3 снижается в среднем на 100 °C по сравнению с исходным составом.

Изучение физико—механических свойств, синтезированных материалов показало, что композиции отличаются высокими показателями износостойкости и прочности на сжатие, в особенности алюминийсодержащие. Однако введение добавок Cr2O3 более 25% вызывает некоторое ухудшение вышеназванных показателей. По— видимому, оксид хрома в таком количестве плохо усваивается в структуре композиционного материала.

Рентгенофазовым, электронно—микроскопическим и электронно—зондовым методами установлено наличие основных кристаллических фаз — рутила, анортита, корунда для алюминийсодержащих и анортита, β — цельзиана, оксида хрома для хромсодержащих стеклокерамических композиционных материалов.

КЕРАМИЧЕСКИЕ ФИЛЬТРЫ И МЕМБРАНЫ

М.П.Купреев, Е.Н.Леонович, В.В.Лесун

Гомельский государственный университет им.Ф.Скорины, г.Гомель

Предложены методы изготовления керамических фильтров и мембран на основе алюмосиликатных и алюмооксидных систем. Разработана технология формирования плоских мембранных элементов диаметром до 160 мм и толщиной 4...10 мм с размерами пор алюмосиликатной подложки до 20 мкм и алюмооксидного селективного слоя толщиной 20.50 мкм с размерами пор 28 мкм.

Технологическая схема включает изготовление подложки с использованием в качестве фракционированного наполнителя электрокорунда, подготовку поверхности подложки к нанесению селективного слоя, нанесение селективного слоя методом окунания, уплотнение селективного слоя, сушку и обжиг селективного слоя при температурах 1150...1250 С. Исследовано влияние исходных компонентов селективного слоя на его деффектность, прочностные и фильтрующие свойства. Оптимизированы режимы нанесения селективного слоя.

Созданные керамические фильтры и мембраны допускают регенерацию моющими, кислотными и слабо—щелочными растворами, высокотемпературной обработкой. Могут быть использованы в качестве мембранных элементов для жидкостей и газов в химической и пищевой промышленности, медицине, биотехнологии и других производствах в условиях как нормальной, так и тангенциальной фильтрации.