полимерных и композитных материалах, разработанных в Беларуси, и о способах их получения. «БаКоМ» 2.2 содержит номеклатурные сведения о более чем 4800 металлических и керамических материалах и изделиях, производимых в СНГ; сведения о свойствах более чем 100 металлических и керамических композиционных материалов и изделий из них, проводимых предприятиями республики, данные о 290 материалах этого класса, изделиях и способах их получения, разработанных в Беларуси. По желанию потребителей эти версии могут быть объединены и поставляться как единый банк данных ("БаКоМ" 2.0). Опытная эксплуатация «БаКоМ» показала обоснованность основных решений, принятых при его разработке.

КИСЛОТОУПОРНЫЕ ИЗДЕЛИЯ НА ОСНОВЕ МЕСТНЫХ ГЛИН

И.В.Пищ, В.А.Ласкин

Белорусский государственный технологический университет, г. Минск

Предприятия различных отраслей промышленности республики испытывают острую потребность в кислотоупорных керамических материалах. Основным сырьем для их производства служат огнеупорные и тугоплавкие глины, которых практически в нашей республике нет. Более близкой по свойствам является глина месторождения «Городок», содержащая мас. % SiO2 — 61,46; Al2O3 — 16,88; Fe2O3 — 6,9; CaO — 1,52; MgO — 1,18; K2O — 1,85; Na2O — 0,25; ппп — 10,43. Глина относится к полукислой, умеренно—пластичной. Однако она содержит большое количество свободной SiO2, что не позволяет получить керамическое изделий с плотным черепком, малым водопоглощением и высокой химической устойчивостью. Используя химические стойкие керамические отходы и указанную глину, разработаны составы кислотоупорных изделий, которые обладают устойчивостью к различным химическим реагентам как в жидком, так и в газообразном состоянии.

В результате проведенных исследований установлено, что полученные кислотоупоры обладают высокими свойствами по сравнению с ГОСТ 474—80: кислотостойкость их — 98,7%, водопоглощение — 0,8—0,9%, предел прочности при сжатии 42 МПА, водопроницаемость — 74 ч. Исследование структуры показало, что повышение свойств связано с образованием в керамике неоднородной макроструктуры. Существенное влияние на ее оказывает водопоглощение отощающих добавок и скорость обжига изделий, которая может привести к возникновению в материале усадочных напряжений и зарождение трещиноватой струк-

гуры. Использование отощающих добавок с низким водопоглощением и правильный подбор режима обжига позволил получить материал, который по своим свойствам превосходит известные аналоги.

ПЛЕНОЧНЫЕ ЭЛЕМЕНТЫ СБИС НА ОСНОВЕ МНОГОКОМПОНЕНТНЫХ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

А.Л.Кобызев, В.В.Шаталов

Белорусский государственный

университет информатики и радиоэлектроники, г. Минск

В качестве материалов пленочных элементов многослойных токопроводящих систем (ТС) СБИС все шире используются пленки тугоплавких металлов и их сплавов, обладающие рядом ценных физико кимических свойств, позволяющие повысить надежность современных ИМЭ.

В работе приведены результаты исследований структурных свойств пленок на основе сплавов Мо—V и Мо—Re, полученных ионно— лученым распылением сплавных мишеней Мо—V и прессованной мишени Мо—Re, нанесенных на Si—подложки и подвергнутых отжигу при 400... 900°C. С помощью рентгенодифрактометрии были исследованы образцы Мо—V (85/15 вес.%), (75/25), (50/50) и Мо—Re(96/4). Толщина пленок сплавов составляла 0,1—0,2 мкм. Образцы подвергались отжигу в вакууме в течение 20 мин. в указанном диапазоне температур. Установлено, что без отжига образцы Мо—V (85/15) и Мо—Re (96/4) имеют аморфную структуру, а образцы состава Мо—V(75/25), (50/50) образуют фазы Mo3Si, MoSi0.65 и V5Si3, MoSi0.65 соответственно, что, вероятно, связано с методом нанесения пленок.

После термообработки на всех образцах Мо—V наблюдаются фазово—структурные превращения с образованием фаз Mo5Si3, V3Si, V5Si3, MoSi0.65 с одновременным присутствием Mo[110].

На образцах Мо—Re фазообразования не наблюдается вплоть до температуры отжига 900°C, а отмечается только рост зерна Мо. С помощью электронной микроскопии получены данные по характеру изменения морфологии поверхности образцов с различным соотношением компонентов после термообработки.

Исследованные материалы рассмотрены в плане перспективности использования их современных типах СБИС.