УЛК 666.321

ТЕРМОСТОЙКАЯ ПОРИСТАЯ КЕРАМИКА ДЛЯ ДИСПЕРГАЦИИ ГАЗООБРАЗНЫХ СРЕД

Е.М.ДЯТЛОВА, С.Е.БАРАНЦЕВА, В.В.ТИЖОВКА, Ю.А.КЛИМОНІ Белорусский государственный технологический университет Минск, Беларусь

Развитие высокотемпературной техники требует создания повых усовершенствованных пористых керамических материалов, способных выдерживать большое количество циклов разогрева — охлаждения. Высокие требования предъявляются к керамике по комплексу термомехапических характеристик, особенно при работе в окислительно-восстановительной среде.

Нами были проведены экспериментальные исследования по получению термостойких пористых керамических элементов для испытания в радиационной горелке.

В качестве керамической матрицы использована предварительно синтезированная составляющая на основе рационального сочетания двух фаз — муллита и кордиерита, обеспечивающих заданные термомеханические характеристики. Синтез проводился из емеси компонентов (глина, тальк, глинозем) при температуре 1220-1240 °C. Термический коэффициент линейного распирения данной керамической составляющей равен $2 \cdot 10^{-6} \, \mathrm{K}^{-1}$.

В связи с тем, что пористое тело должно быть равномерно пропицаемым для газа, сжигаемого на поверхности и фильтрующегося сквозь его поры, пористый элемент представляет собой полый цилиндр. Газ подается в его внутреннюю полость, проходит сквозь пористый элемент и сгорает на его внешней поверхности.

Керамический элемент должен иметь размер пор диаметром $d_{\rm II}=0.5$ -0.7 мм, поэтому необходимо использовать керамические порошки монофракционного состава с размером частиц 1-1.5 мм, так как соотношение между размерами зерен и образующихся пор для данного способа приближается к двум.

Для получения пористых элементов использовали монофракционный порошок муллито-кордиеритовой керамики с определенным размером частиц, а как связующие материалы -- бентонит и муку. Данная смесь увлажнялась водой.

Бентонит является монтмориллопитсодержащей горной породой, имеющей высокую гидрофильность и дисперсность, улучшающей связность керамических масс и их формовочные свойства. Оп имеет удельную поверхность до $100~\text{m}^2/\text{r}$ и размер частиц $\leq 1~\text{мкм}$.

Мука (пшеничная или ржаная) — одно из давно известных связующих, обладающих высокой клеящей способностью, необходимой при прессовании изделий.

Кроме этого, в композиции была использована добавка тонкомолотого стеклокристаллического материала, который по напим предположениям обеспечит снижение температуры спскания на 40-50 °C, а образующаяся тонкая прослойка стекловидной фазы между зернами наполнителя улучшит механические свойства за счет более прочного сцепления керамических частиц материала, а также повысит проницаемость системы, благодаря снижению гидравлического сопротивления, несмотря на некоторое снижение открытой пористости.

В табл.1 приведены основные технологические параметры получения образцов, показатели открытой пористости и значения ТКЛР в интервале температур $20\text{-}400\,^{\circ}\text{C}$.

Табл. 1. Основные технологические параметры получения образцов и их свойства

Помер образца	Состав композиции	Размер фракции, мм	Температура спекания, °С	Пористость открытая, %	ТКЛР, α·10 ⁶ К ⁻¹
1	Керамический на- полнитель Бентонит Мука Вода	1,0-0,63	1260	45,1	4,1
2	Керамический на- полнитель Белтонит Ситалл Вода	2,0-1,0	1220	39,5	4,0
3	Керамический на- полнитель Бентонит Мука Вода	1,4-1,0	1240	42,5	4,1

Экспериментально подобрано оптимальное давление прессования цилиндрических деталей, обеспечивающее достаточное сцепление частиц без их разрушения и небольшой разброс пористости по высоте прессовки.

Таким образом, на основе керамики с низким температурным коэффициентом линейного расширения с использованием неорганических, органических и стеклокристаллических связующих получены пористые материалы с открытой пористостью более 40 %, достаточной механической прочностью и проницаемостью.