ПРОЦЕССЫ, ПРОТЕКАЮЩИЕ ПРИ СИНТЕЗЕ ЖЕЛЕЗОСОДЕРЖАЩИХ ГЛАЗУРНЫХ ФРИТТ

Ю. С. Радченко, И. А. Левицкий

Белорусский государственный технологический университет

В последние время в керамической промышленности большое внимание уделяется вовлечению в производство недефицитного природного сырья и разнообразных отходов промышленности. В ряде случаев качество материалов, полученных на основе данного сырья, превосходит качество материалов, изготовленных из синтетических дорогостоящих продуктов. К такому виду сырья можно отнести горные породы основного состава — метадиабазы [1, 2], для которых характерно повышенное содержание красящих оксидов железа и наличие оксидов щелочных и щелочно-земельных металлов, что обусловливает возможность создания на их основе беспигментных цветных глазурей широкой цветовой гаммы. Кроме того, их широкая распространенность в природе, благоприятные условия залегания и невысокая стоимость создают предпосылки для синтеза экономически выгодных глазурных покрытий широкого диапазона составов, свойств и назначений.

Вопрос синтеза цветных глазурей на основе природного магматического сырья систематически не изучен, отсутствует теоретический анализ фазообразования в железосодержащих силикатных системах (начиная от твердофазовых реакций в шихтах и кончая структурными превращениями в расплаве и формирующемся глазурном покрытии). Характер и степень завершенности протекания процессов силикато- и стеклообразования в стекольной шихте в значительной мере определяют свойства и фазовый состав глазурей, а также температуру их фриттования и наплавления. Известно [3], что процессы стеклообразования в железосодержащих составах происходят при более низких температурах вследствие меньшей силы связи Fe – O,

Таблица 1

Шихта	Массовое содержание, %							
	мета- диабаза	кварцевого песка	борной кислоты	кальцини- рованной соды	природного мела			
6.1	45,90	15,15	65,00	12,83	=			
12.2	68,85	12,63	10,00	17,10	8,90			

чем Si-O, вхождения Fe_2O_3 в структурную сетку стекла в виде тетраэдров $[FeO_4]^{2-}$ и модифицирующей роли двухвалентного иона железа. Кроме того, высказывается мнение [4] о сохранении появившихся в результате процессов силикатообразования кристаллических фаз в расплаве и стекле в виде структурных группировок, что способствует снижению температуры и повышению интенсивности выделения соответствующих фаз в глазурном покрытии.

В связи с этим исследование процессов силикато- и стеклообразования в железосодержащих шихтах представляет определенный интерес. С целью установления особенностей протекания данных процессов при использовании в составе шихты метадиабаза параллельно проведено исследование с модельными шихтами на основе технического сырья — оксидов и карбонатов. Составы исследуемых шихт и химические составы стекол приведены в табл. 1 и 2.

Исследование выполняли комплексным методом, включающим дифференциально-термический и рентгенофазовый анализы, а также ИК-спектроскопию.

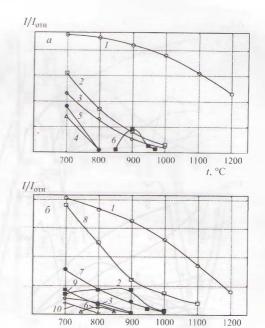
ДТА шихт показал наличие трех эндоэффектов в области температур 640 – 840°C, который обычно связывают с разложением карбонатов, реакциями силикатообразования и плавлением ряда эвтектик. Для метадиабазсодержащих шихт первые два из них менее интенсивны, а последний, обусловленный реакцией взаимодействия свободной соды и кремнезема и появлением жидкой фазы, проявляет явную тенденцию к смещению в область более низких температур (760 – 780°С). Это можно объяснить тем, что при использовании метадиабаза в состав шихты вводятся природные силикаты, образование которых в модельной шихте требует определенных затрат теплоты. Есть основания считать также, что при введении природных силикатов появление эвтектик происходит значительно легче, в результате чего суммарные затраты теплоты при варке фритт снижаются. Кроме того, применение горных пород, содержащих силикатные и алюминатные соединения, в которых ион железа находится преимущественно в двухвалентном состоянии,

Таблица 2

Стекло	Массовое содержание, %										
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	B_2O_3
6.1	35,54	0,54	8,20	2,54	2,43	0,07	1,94	3,90	11,56	0,77	32,50
12.2	47,24	0,81	12,21	3,81	3,64	0,11	2,88	10,82	12,33	1,15	5,00

способствует устранению интенсивного пенообразования на стадии варки [5], что наблюдалось и в наших исследованиях.

Фазовый состав продуктов термообработки шихт в интервале температур $700-1200^{\circ}$ С исследовали на дифрактометре ДРОН-3 (FeK $_{\alpha}$ -излучение).


При температуре 700°C на дифрактограмме модельной шихты 6.1 (рис. 1) ярко выражены дифракционные максимумы, принадлежащие кварцу и гематиту. Фиксируется наличие α-Al₂O₃, что свидетельствует о неполном вступлении оксида алюминия во взаимодействие при данной температуре термообработки. Идентифицируется шпинель — магнезиоферрит MgFe₂O₄, образование которой обусловлено появлением на ранних стадиях термообработки MgO вследствие разложения углекислого магния и его взаимодействием с α-Fe₂O₃. При указанной температуре в продуктах термообработки шихты обнаружены два тройных соединения. Это кальциево-железистый силикат, в структуре которого произошло изоморфное замещение части ионов Fe³⁺ и Si⁴⁺ ионами титана с образованием скорломита Ca₃(Fe, Ti)₅(Si, Ti)₃O₁₂, и пироксеновый силикат состава эгирин-авгита (Ca, Na)(Fe²⁺, Mg²⁺, Fe³⁺)Si₂O₆.

С повышением температуры термообработки до 800° С наблюдается уменьшение пиков, принадлежащих α -SiO₂, α -Fe₂O₃ и MgFe₂O₄, что говорит о переходе данных фаз в расплав. Судя по формам пиков, фазы скорломита и эгирин-авгита отсутствуют, т.е. эти фазы являются промежуточными продуктами взаимодействия компонентов щихты.

При температуре 900°С продолжается переход α -SiO₂, α -Fe₂O₃ и MgFe₂O₄ в расплав. При температуре 1000°С на дифрактограмме фиксируются остаточные рефлексы α -Fe₂O₃ и MgFe₂O₄. Вследствие насыщения расплава оксидами магния за счет плавления MgFe₂O₄ в интервале температур 850 – 950°С отмечается существование натриево-магниевого силиката. Полное расплавление компонентов шихты и продуктов силикатообразования происходит при 1280°С.

В шихте 6.1 на основе метадиабаза при температуре 700°C фиксируются фазы, соответствующие породообразующим минералам метадиабаза: роговая обманка (группа амфибола), олигоклаз-андезин (плагиоклаз), биотит, магнетит и эпидот, а также кварц. Кроме того, присутствуют гематит и магнезиоферрит, появление которых обусловлено окислением структурного железа роговой обманки и частичным разложением эпидота и биотита. С увеличением температуры происходит расплавление породообразующих минералов и компонентов шихты. Наблюдается увеличение количества гематита вплоть до температуры 900°C с последующим его расплавлением при ее повышении. Натриево-магниевый силикат, обнаруженный в модельной шихте, в данной шихте образуется в незначительном количестве при температуре 800°C.

Установлено, что плавление составных частей метадиабаза в стекольных шихтах протекает более ин-

Рис. 1. Изменение фазового состава модельной (a) и синтезированной (b) шихт состава b. В процессе варки b. — кварц; b. — гематит; b. — магнезиоферрит; b. — скорломит; b. — эгирин-авгит; b. — натриево-магниевый силикат; b. — амфибол; b. — плагиоклаз; b. — биотит; b. — эпидот

тенсивно и при более низких температурах по сравнению с природным метадиабазом. Так, разрушение эпидота происходит до температуры 800°С, в интервале температур 800 – 1000°C отмечается интенсивное разложение амфибола, до 900°C — биотита. Кроме того, в шихте данного состава отсутствует образование пироксеновых фаз из продуктов распада породообразующих минералов, характерное для природного метадиабаза, что можно объяснить появлением при низких температурах значительного количества жидкой фазы и ее активностью в растворении компонентов шихты. В метадиабазсодержащей шихте процессы стеклообразования протекают более интенсивно и смещены в область низких температур примерно на 40 - 60°C по сравнению с модельной шихтой. Полное расплавление компонентов шихты наблюдается при температуре 1220 - 1240°C.

Аналогичное исследование процессов стекло- и силикатообразования проведено для шихты 12.2, отличающейся от шихты 6.1 не только дополнительным содержанием CaO, вводимого посредством CaCO₃, но и более высоким содержанием метадиабаза за счет снижения количества B_2O_3 . В связи с этим можно ожидать изменения в характере процессов стекло- и силикатообразования шихты 12.2.

Фазовый состав продуктов термообработки модельной шихты 12.2 (рис. 2) при температуре 700°C аналогичен шихте 6.1 и представлен α -SiO₂, гематитом, магнезиоферритом, остатками непрореагировавшего α -Al₂O₃, а также скорломитом и эгирин-авгитом. Повышение температуры способствует растворению кварца. При температуре 800°C фаза скорломита от-

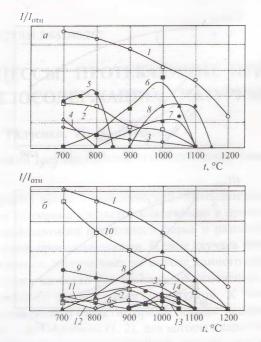


Рис. 2. Изменение фазового состава модельной (a) и синтезированной (b) шихт состава 12.2 в процессе варки b — кварц; b — гематит; b — магнезиоферрит; b — скорломит; b — эгирин-авгит; b — мелилит; b — натриевый алюмосиликат; b — диопсид; b — амфибол; b — плагиоклаз; b — биотит; b — эпидот; b — гиперстен; b — шпинель

сутствует. В отличие от шихты 6.1 при данной температуре наблюдается рост пиков, принадлежащих эгирин-авгиту. Температурный интервам существования данной фазы — до 850° С. Кроме того, зафиксировано образование соединения состава $Na_2O \cdot 2CaO \cdot Al_2O_3 \cdot 4SiO_2$, относящегося к силикатам с изолированными $[Si_2O_7]$ группами (мелилитовая группа). Наибольшая интенсивность максимумов данной фазы наблюдается при 1000° С, а при температуре выше 1000° С она переходит в расплав.

При температуре 900° С в продуктах термообработки модельной шихты происходит образование натриевого алюмосиликата NaAlSiO₄, количество которого увеличивается до температуры 1050° С. Интенсифицируются процессы растворения кварца, гематита и магнезиоферрита. При температуре 1000° С зафиксировано образование диопсидоподобной твердой фазы.

Фазовый состав спека шихты при температуре 1100°С представлен кварцем, диопсидовой фазой и натриевым алюмосиликатом, при 1200°С присутствует только кварц. Полное плавление шихты наблюдается при температуре 1300°С.

На рентгенограмме стекольной шихты 12.2 на основе метадиабаза при температуре 700°С фиксируются дифракционные максимумы, принадлежащие плагиоклазу, амфиболу, биотиту, эпидоту, гематиту, кварцу, магнетиту и магнезиоферриту. Образование магнезиоферрита происходит в результате разложения магнетита.

При температуре 800°C уменьшается интенсивность пиков всех ранее существовавших фаз. При дан-

ной температуре эпидот не обнаружен. Биотит разрушается в интервале температур 700 и 1100°С. Начало процесса приходится на 750°С, при этом из продуктов распада образуется магнезиоферрит, о чем свидетельствует увеличение пиков данной фазы вплоть до температуры 1000°С. Кроме того, возрастает количество гематита, который возникает при разрушении амфибола. Наряду с указанными процессами происходит образование мелилитовой фазы, а также появляются пики, характерные для диопсидоподобной фазы.

При температуре 900°С в продуктах термообработки шихты фиксируется увеличение максимумов, принадлежащих шпинелям (магнетит и магнезиоферрит), мелилитовой и диопсидовой фазам, обусловленное. очевидно, разложением породообразующих амфибола и биотита, а также плавлением плагиоклаза и компонентов шихты. С повышением температуры происходит плавление мелилита, а при 1000°С наблюдаются лишь следы данной фазы.

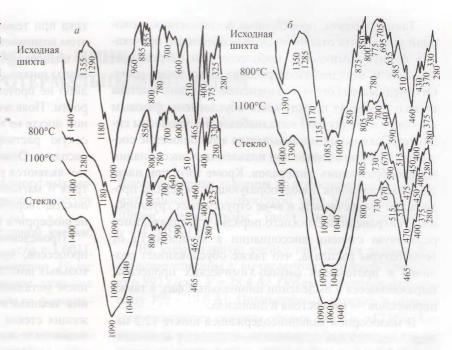
В интервале температур $950-1050^{\circ}\mathrm{C}$ отмечается интенсивное разложение амфибола, что на $50-100^{\circ}\mathrm{C}$ ниже, чем в чистом метадиабазе. При этом образуется диопсидоподобная фаза, интенсивность пиков которой значительна при температуре $1000^{\circ}\mathrm{C}$, а также гиперстен (Fe, Mg)SiO₃, представляющий собой твердый раствор FeSiO₃ и MgSiO₃. При температуре $1000^{\circ}\mathrm{C}$ фиксируется интенсивное образование MgFeAlO₄. — соединения со структурой шпинели, следы которого отмечены еще при $900^{\circ}\mathrm{C}$, а при температуре выше $1100^{\circ}\mathrm{C}$ MgFeAlO₄ переходит в расплав.

Отметим, что при температуре 1000° С интенсивность пиков гематита уменьшается, а при 1100° С гематит отсутствует, т.е. Fe_2O_3 либо переходит в расплав, либо вступает во взаимодействие с компонентами шихты с образованием магнетита и магнезиоферрита.

При температуре 1100°C интенсивность всех пиков снижается, так как практически все фазы переходят в расплав. Зафиксированы дифракционные максимумы кварца и остаточные рефлексы плагиоклазовой и диопсидовой фаз, гиперстена и MgFeAlO₄. На рентгенограмме продуктов термообработки шихты при 1200°C присутствуют лишь незначительные по интенсивности пики α -SiO₂.

Таким образом, при нагреве шихты 12.2 наряду с процессами диссоциации отдельных компонентов и образования ряда продуктов их взаимодействия наблюдается интенсивное формирование диопсидоподобной фазы. Полное плавление стекольной шихты наблюдается при температуре 1240 – 1250°C, что значительно ниже, чем температура плавления модельной шихты этого же состава.

Для уточнения полученных результатов проведены исследования изменения структуры продуктов взаимодействия шихт и стекол с помощью ИК-спектроскопии. Ввиду многокомпонентности стекольных шихт и наложения друг на друга полос, присущих компонентам шихты и продуктам их взаимодействия, полученные спектрограммы имеют сложный характер (рис. 3).


Основное различие в спектрах модельных и метадиабазсодержащих шихт и стекол наблюдается в области основвалентных колебаний связей Si - O, что обусловлено различной степенью связности тетраэдров [SiO₄]. Для модельных шихт отмечается узкая интенсивная полоса с максимумом при 1090 см - 1, что соответствует колебаниям связей Si - O в структуре кварца. В метадиабазсодержащей шихте полоса основных валентных колебаний связей Si - О имеет значительную ширину и охватывает область от 800 до 1150 см - 1 с максимумами при 1090, 1040 и 960 - 1000 см 1, что соответствует валентным колебаниям связей Si - O - Si соответственно как в каркасной структуре плагиоклаза, так в слоистой и цепочечной структурах амфиболов [6].

Для амфиболов также характерны интенсивные полосы в области 920 – 940 и 630 – 650 см ¹. На ИКспектрах не обнаружены "чистые" по-

лосы поглощения $Me^{2+} - O$ и $Me^{3+} - O$, что обусловлено влиянием мощного заряда и поляризующего действия ионов кремния, с которыми ионы Me^{2+} и Me^{3+} в октаэдрических позициях делятся легко поляризуемыми ионами кислорода [6,7]. Однакө зафинсированы комбинированные полосы $Si-O-Me^{2+}$ и $Si-O-Me^{3+}$. К колебаниям связей $Si-O-Me^{3+}$ относятся полосы в области 470-550 см $^{-1}$. Полосы для связей $Si-O-Me^{2+}$ вследствие большего расстояния $Me^{2+}-(O-Si)$ и более ионного характера этой связи обнаружены при более низких частотах (400-450 см $^{-1})$.

Более сложным является изучение области основных полос $280-450 \text{ см}^{-1}$, где происходит наложение полос $[SiO_4]$ и полос $[MeO_6]$. Для группировки $[Fe^{2+}O_6]$ полоса поглощения находится в области $300-400 \text{ см}^{-1}$, для групп $[Fe^{3+}O_6]$ — около 320 см^{-1} .

В результате проведенных исследований установлено, что изменения в ИК-спектрах поглощения как модельной, так и метадиабазсодержащей шихты подтверждают данные рентгенофазового анализа. Так, по мере повышения температуры в модельных шихтах происходит расширение основной полосы в сторону меньших частот, что обусловлено образованием групп Si - O - Si дисиликатного (слоистая структура) и метасиликатного (цепочечно-ленточная структура) типов, а также кольцевых и островных групп, полосы поглощения которых обнаружены в области $740 - 830 \text{ см}^{-1}$. Деполимеризация связей Si - O - Si с увеличением температуры отмечена также в метадиабазсодержащей шихте. Более сглаженный спектр с менее интенсивными полосами поглощения полос при повышении температуры термообработки шихт указывает на переход их компонентов в стеклообразное состояние. Сниже-

Рис. 3. ИК-спектры модельной (a) и синтезированной (b) шихт и стекол состава 12.2

ние интенсивности полос в районе 780 - 800 см $^{-1}$ свидетельствует о переходе зерен кварца в стеклофазу.

Характер изменения ИК-спектров продуктов термообработки шихт и стекол позволяет утверждать, что образовавшиеся в процессе твердофазовых реакций в шихте структурные группировки продолжают существовать и в расплаве, имея различную степень диссоциации в зависимости от температуры расплава. Кроме того, в процессе остывания расплава, очевидно, происходит полимеризация данных структурных групп. Это создает условия для быстрого зарождения кристаллических центров в процессе обжига покрытия и снижает температуру формирования кристаллических фаз.

Результаты РФА и ИК-спектроскопии показывают, что процесс растворения зерен кварца в модельных и метадиабазсодержащих шихтах различается по своей интенсивности и температурному интервалу. Как известно, процесс растворения остатков кварцевых зерен лимитируется диффузией избыточного SiO2 из пограничной зоны, пересыщенной диоксидом кремния, в окружающий раствор силикатов под влиянием градиента концентраций. При использовании метадиабазсодержащих шихт появляющаяся при низких температурах в значительном количестве жидкая фаза способствует интенсивному растворению компонентов шихты, что приводит к увеличению скорости растворения кварцевых зерен на этапе стеклообразования. Кроме того, основная часть SiO₂ входит в структуру породообразующих минералов и переходит в расплав при их плавлении, а на этапе стеклообразования происходит лишь растворение зерен кварца, введенных с кварцевым песком. Все это и обусловливает более низкие температуры синтеза стекол при использовании в составе шихты метадиабаза.

Таким образом, проведенные исследования позвотили установить отличительные особенности протекания физико-химических процессов при нагреве модельных и метадиабазсодержащих стекольных шихт. Отмеченные различия в изменении фазового состава стекольных шихт прежде всего обусловлены фазовым составом и структурой метадиабазов. На процессы силикатообразования накладывается возникновение соединений, происходящее при плавлении и диссоциации породообразующих минералов. Кроме того, при плавлении метадиабаза породообразующие минералы продолжают существовать в виде структурных группировок с сохранением ближнего порядка в расплаве, имея различную степень диссоциации в зависимости от температуры расплава, что также обусловливает различие в протекании физико-химических процессов, выражающееся в выделении шпинельных фаз, а также пироксенов — гиперстена и диопсида.

В малоборной кальцийсодержащей шихте 12.2 наряду с процессами диссоциации отдельных компонентов и образования ряда продуктов их взаимодействия происходит интенсивное формирование диопсидоподобной фазы. В метадиабазсодержащей шихте появление диопсидового твердого раствора обусловлено наличием в образующемся расплаве структурных группировок, характерных для пироксенов, формирование которых происходит при разложении породообразующих минералов (амфиболов). В модельной шихте диопсидовая фаза, очевидно, появляется в результате формирования эгирин-авгитового твердого раствора с последующим изменением его состава на диопсидовый.

Присутствие значительного количества борсодержащего сырья в составе шихты 6.1 вызывает существенные изменения в характере процессов силикатообразования. Кроме того, незначительное содержание в составе CaO уменьшает количество возможных реакций с его участием, что снижает вероятность образования кальциевых соединений. Очевидно, в многоборной стекольной шихте сода реагирует не с SiO₂ (эвтек-

тика при температуре 780°С), а с оксидом бора. При этом возникает борат натрия, который затем в интервале температур 600 – 1200°С активно растворяет компоненты шихты. При этом реакции силикатообразования либо не протекают, либо имеют незначительные скорости. Появление твердого раствора диопсида в данной шихте не происходит, что также подтверждает высокую растворяющую способность образующегося расплава. Основными реакциями в многоборных шихтах являются реакции с участием оксидов железа, натрия и магния: образование натриево-магниевого силиката, твердого раствора эгирин-авгита, а также магнезиоферрита и магнетита.

Проведенные исследования физико-химических процессов, протекающих в железосодержащих стекольных шихтах, как в модельных, так и с использованием метадиабаза, открывают возможность управления технологическим процессом варки железосодержащих стекол, вовлечения в производство различных видов железосодержащего сырья.

СПИСОК ЛИТЕРАТУРЫ

- 1. Перспективы использования горных пород основного состава юга Беларуси для производства минеральных волокон / Н. В. Аксаментова, Н. А. Кожемякина, С. Е. Баранцева и др. // Литосфера. — 1998. — № 8. — С. 97 – 107.
- Комплексное исследование горных пород основного состава в качестве сырья для керамической промышленности / Ю. Г. Павлюкевич, И. А. Левицкий, Н. В. Аксаментова, Ю. С. Радченко // Стекло и керамика. — 1998. — № 11. — С. 6 – 9.
- 3. Жунина Л. А., Кузьменков М. И., Яглов В. Н. Пироксеновые ситаллы. М., 1974. 225 с.
- 4. Саркисов П. Д., Семин М. А., Егорова Л. С. Стеклообразование и кристаллизация стекол системы $SiO_2-Al_2O_3-Fe_2O_3(FeO)-CaO-MgO-R_2O$ // Стекло и керамика. 1995. № 11. С. 6 7.
- Кулева А. Е., Панкова Н. А., Орлова Л. А. Причины вспенивания железосодержащих расплавов // Стекло и керамика. 1999. № 7. С. 13 17.
- Плюснина И. И. Инфракрасные спектры минералов. М., 1977. — 174 с.
- Плоснина И. И. Инфракрасные спектры силикатов. М., 1967. — 289 с.

КВЦ "СОКОПЬНИКИ"

4-я международная выставка продукции машиностроительных предприятий. Технопогии, станки и инструменты для обработки метапла, дерева, камня и синтетических материалов. Комплектующие изделия и материалы, научно-технические разработки, компьютерные технологии

МАШИНОСТРОЕНИЕ

3 - 7 сентября

Адрес: Сокопьнический вап, 1, пав. 4 Тепефон: (095) 268-63-23