Литература

[1] R. C. Sangster, J. W. Irving, J. chim. phys., 24, 670 (1956). D. G. Ott, Th. Hayes, J. E. Hammel, J. F. Kepharet, Nucle, 13, 5 (1955). Дж. Биркс. Сцинтилляционные счетчики. ИИЛ, 94 (1955). Л. Я. Малкес, Л. В. Шубина, Ю. М. Винецкая. Промышленность химических реактивов и особо чистых веществ 8 (14). НИИТЭХИМ, М., 58 (1967). Л. Л. Нагорная, Л. Я. Малкес, Л. В. Шубина, Опт. и спектр., 12, 644 (1962).
[2] А. Heller, J. Chem. Phys., 40, 2839 (1964).

[3] А. В. Шубина, Л. Я. Малкес, ЖОрХ, 1,896 (1965); ЖОХ, 45, 1481 (1975). З. Н. На-зарова, И. И. Попов, А. М. Симонов, А. П. Кравцова, С. С. Горяев, ХГС, 1973, 870. Швейц. пат. 547243 (1974); РЖХим., 1974, 23Н308П. Швейц. пат. 558768 (1975); РЖХим., 1975, 19Н232П. Японск. пат., (СО9в), № 9140 (1972); РЖХим..

(1973); Р. М. Хим., 1976, 1911 2011. Повет пове

[6] С. А. Вартанян, А. Г. Вартанян, М. М. Тарвердян, С. П. Хрлакян. Монокристаллы, сцинтилляторы и органические люминофоры, вып. 5, ч. 1 (Матер. V Всесоюзн. конфер. по синтезу, производству и использованию сцинтилляторов). Ротапринт ВНИИ монокристаллов, Харьков, 127 (1969); С. А. Вартанян, С. П. Барсамян, М. М. Тарвердян, Арм. хим. ж., 24, 414 (1971); С. А. Вартанян, А. Г. Вартанян, С. П. Барсамян, Е. А. Араратян, М. М. Тарвердян, Арм. хим. ж., 26, 335 (1973); С. А. Вартанян, А. Г. Вартанян, Е. А. Араратян, Арм. хим. ж., 25, 948 (1972).

[7] А. Е. Siegrist, P. Liechti, H. R. Neyer, K. Weber, Helv. chim. acta, 52, 2521 (1969).

[8] G. Drefahl, G. Plotner, Chem. Ber., 91, 1276 (1958).

[9] J. В. Berlman. Organic Scintillators. Acad. Press, N. Y., 25 (1971).

[10] Л. В. Шубина, Л. Я. Малкес, ЖОРХ, 1, 347 (1965).

[11] Е. А. Андреещев, И. М. Розман, Опт. и спектр., 8, 828 (1960).

[12] С. Ф. Килин, Ю. П. Кушакевич, И. М. Розман, Ж. прикл. спектр., 10, 341 (1969).

[13] К. Вейганд, Г. Хильгетаг. Методы эксперимента в органической химии. Изд. «Химия», М., 97 (1969). сталлы, сцинтилляторы и органические люминофоры, вып. 5, ч. 1 (Матер.

Поступило 4 І 1977

Журнал органической химии том XV, вып. 10 (1979)

УДК 547.556.3

СИНТЕЗ МЕЗОМОРФНЫХ ЭФИРОВ n-(n-АЛКОКСИФЕНИЛАЗО)БЕНЗОЙНЫХ, -o-ХЛОРБЕНЗОЙНЫХ. КОРИЧНЫХ И а-МЕТИЛКОРИЧНЫХ КИСЛОТ

О. Н. Бубель, В. С. Безбородов, А. З. Абдулин

Взаимодействием п-(п-оксифенилазо)бензойной, -о-хлорбензойной, коричной и а-метилкоричной кислот с галоидными алкилами получены соответствующие алкоксиазокислоты, этерификация которых спиртами приводит к образованию азосоединений. характеризующихся наличием смектических А, С, В и Е фаз.

Открытие в последнее время сегнетоэлектрических свойств у некоторых смектических жидкокристаллических соединений [1] стимулировало расширение исследований по выявлению более тонких закономерностей образования смектических фаз в зависимости от химического строения мезоморфных веществ. Ранее [2] было показано, что производные алифатических эфиров n-амино- α -метилкоричной кислоты обладают различными смектическими фазами, в том числе и сегнетоэлектрической хиральной смектической фазой С.

В настоящей работе с целью выяснения влияния азогруппы и удаления сложноэфирной группы от бензольного кольца на смектический мезоморфизм были синтезированы новые рацемические 2-метилбутиловые, амиловые и дециловые эфиры n-(n-алкоксифенилазо)бензойных, -o-хлорбензойных, коричных и а-метилкоричных кислот (I—XVI\ (см. таблицу).

$$HO \longrightarrow + \overline{Cl} \dot{N}_{2} \longrightarrow ZCOOH \longrightarrow$$

$$X$$

$$\rightarrow HO \longrightarrow N=N \longrightarrow ZCOOH \xrightarrow{R^{1}H_{1g}, KOH} \longrightarrow R^{1}O \longrightarrow N=N \longrightarrow ZCOOH \xrightarrow{R^{2}OH} \longrightarrow R^{1}O \longrightarrow N=N \longrightarrow ZCOOR^{2}$$

$$I-XVI \qquad X$$

 $R^{1} = C_{5}H_{11}, C_{10}H_{21}; R^{2} = d, l-2-CH_{3}C_{4}H_{8}, C_{5}H_{11}, C_{10}H_{21}; X = H, Cl; Z = O, CH = CH, CH = C(CH_{3}).$

В отличие от данных работы [3] *алкильные радикалы (R1) вводили алкилированием бромистым или иодистым алкилирования кислот (A) в присутствии спиртовой щелочи. Попытка алкилирования кислот (A) в водной щелочи привела к выделению продуктов (I, VI), одновременно этерифицированных по фенольной и карбоксильной группам. Такое течение реакции объясняется, по-видимому, тем, что алкоксикислоты (Б) и в особенности их эфиры слабо растворимы в воде, что затрудняет гидролиз сложноэфирных групп. Дальнейшее взаимодействие алкоксиазокислот (Б) со спиртами в присутствии п-толуолсульфокислоты или реакция хлорангидридов этих кислот со спиртами в присутствии пиридина приводят к образованию соединений (II—V, VII—XVI), причем в последнем случае выход конечных продуктов значительно выше.

В спектрах ПМР соединений (I-XVI) наблюдаются триплеты сигналов метиленовых протонов алкильных радикалов эфирной (3.92—3.94 м. д., J 6.5 Γ ц) и сложноэфирной (4.08—4.24 м. д., J 6.5 Γ ц) группировок, триплеты сигналов концевых метильных групп (0.98—0.96 м. д., J.7 Γ ц), сигналы протонов фенильного ядра, связанного с эфирной группой в виде дублетов с центрами 7.8—8.06 и 7.78—7.98 м. д. (J 7 Γ ц), и дублеты сигналов протонов бензольного кольца, связанного с карбоксилат-

ной группировкой (7.74—7.82, 6.84—6.89 м. д., Ј 8 Гц).

Интенсивные полосы поглощения при 1720 и 1260 см⁻¹ в ИК спектрах соединений (I—XVI) обусловлены валентными колебаниями сложноэфирной карбонильной группы и валентными колебаниями связи С—О фени-

лового эфира.

* Все полученные вещества, за исключением (II, XV, XVI), мезоморфны. Для соединения (III) характерен монотропный мезоморфизм, для всех остальных (I, IV—XIV) — энантиотропный. Эфиры n-(n-алкоксифенилазо)бензойных кислот (I—VI) обладают только смектической фазой A, эфиры n-(n-алкоксифенилазо)- α -метилкоричных кислот (XIII, XIV) — смектическими A и C фазами, а эфиры n-(n-алкоксифенилазо)коричных кислот (VII—XII) смектическими A, C, B и E фазами. Термическая стабильность мезофаз указанных соединений возрастает, а температурная область существования их уменьшается в ряду от эфиров бензойной к эфирам α -метилкоричной и затем к эфирам коричной кислот. 2-Метилбутиловый эфир n-(n-децилоксифенилазо)- α -метилкоричной кислоты (XIV) характеризуется более низкой температурой перехода α к изотропной жилкости, чем соответствующий анил α - α -метилкоричной кислоты (XIV)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ПК'спектры 0.1 М. растворов веществ в ССІ₄ записывали на спектростоим в СПС-20». Спектры ПМР веществ 10% концентрации (эталон — ГМДС) получали на спектрометре «Tesla BS-467». Температуры фазовых вереходов определяли с помощью термопары медь—константан, помещен-

Эфиры n-(n-алкоксифенилазо)бензойных, -о-хлорбензойных, коричных и α -метилкоричных кислот $\mathbf{R}^1\mathsf{OC}_6\mathsf{H}_4\mathsf{N}\!=\!\mathsf{NC}_6\mathsf{H}_3(\mathsf{X})\mathsf{ZCOOR}^2$

\$ -0.	Вычислено "/"	z	66994 22993 22993 22993 22993 22999 22999 22999 22999 22999 22999
		н	2.7.8.8.8.8.9.7.8.7.8.9.8.8.8.8.8.8.8.8.8
		U	75.25 77.25 77.53 75.31 75.61 75.61 75.61 66.26 66.26
	Формула		C23 H30 N2 O3 C28 H40 N2 O3 C28 H40 N2 O3 C28 H40 N2 O3 C38 H50 N2 O3 C36 H50 N2 O3 C37 H44 N2 O3 C31 H44 N2 O3
	Найдено %	z	601 600 600 600 600 600 600 600 600 600
		н	66.25
		U	71.85 74.21 74.21 74.51 74.51 75.63 75.53 75.53 75.78 75.78 66.29 66.29
	Температуры переходов, °С я	ФИ	80.5 665.5 87.5 1119 127.5 1116.5 101.5 25.5 25.5 25.5
		CWK A	*11
		р жжр	88 95 95
		CWK B	72 75
		CHRE	160 80
	T.	TK	77 25 88 88 88 88 88 88 88 88 88 88 88 88 88
	Выход,		6652744653369 66527446533665 665276
	×		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	×		ппппппппппппппппппппппппппппппппппппппп
	R,		CHICH CONTROL
	п		
	ле сослине- ния		

Примечание, в ТК – кристаллическая фаза, СЖК В – смеклическая фаза Е, СЖК В – смеклическая фаза В, СЖК С – смеклическая фаза С, СЖК А – смеклическая фаза А, ИФ – изотролная фаза.

ной в тонкий слой вещества, фазовые переходы которого визуально наблю-

дали при помощи поляризационного микроскопа «МП-3».

n-(n-Оксифенилазо)бензойную, -о-хлорбензойную, коричную и α-метилкоричную кислоты получали азосочетанием фенола с диазотированными п-аминобензойной, п-амино-о-хлорбензойной, п-аминокоричной и

n-амино- α -метилкоричной кислотами [4].

Амиловый (дециловый) эфир n - [n - амил (децил)оксифенилазо] бензойной кислоты (I, VI). Смесь 0.05 моля n-(n-оксифенилазо)бензойной кислоты, 0.2 моля едкого натра, 0.25 моля бромистого или иодистого алкила в 400 мл воды кипятили 24 ч. Смесь охлаждали, масляный слой экстрагировали эфиром. Эфирный раствор промывали водой, сушили сульфатом магния. Кристаллы, полученные после отгонки растворителя и галоидного алкила, перекристалли-

зовывали из гексана. Выход 30-50%.

Эфиры п-(п-алкоксифенилазо) бензойной, -о-хлорбензойной, коричной и а-метилкоричной кислот (II—IV, VIII—XVI). Смесь 0.1 моля соответствующей оксиазокислоты, 0.22 моля едкого кали, 0.2 моля соответствующего бромистого или иодистого алкила в 150 мл этанола кипятили при перемешивании 3 суток. Реакционную смесь выливали в 300 мл воды, кипятили и затем подкисляли концентрированной соляной кислотой. Осадок фильтровали и перекристаллизовывали из уксусной кислоты. Полученную алкоксиазокислоту без дальнейшей очистки использовали для получения эфиров кислот. Этерификацией кислот спиртами в присутствии п-толуолсульфокислоты получали мезоморфные эфиры с выходом 30-40%, взаимодействием хлорангидридов кислот со спиртами в присутствии пиридина с выходом 50-70%. Все полученные соединения (II-IV, VIII-XVI) хроматографировали на колонке с окисью алюминия. Элюент — петролейный эфир-диэтиловый эфир, 1:1.

Литература

[1] P. Martinot-Lagarde, J. Phys. Colloq., 36, C3-37 (1976).

_ [2] Д. В. Володько, О. Н. Вубель, А. З. Абдулин, В. С. Безбородов, В. С. Рачкевич, Изв. АН БССР, сер. физ.-мат. наук, № 5, 63 (1977). [3] D. Vorlander, Z. Phys. Chem., A126, 449 (1927).

[4] Вейганд-Хильгетаг. Методы эксперимента в органической химин. Изд. «Химия», 405 (1969).

Поступило 25 I 1979

Научно-исследовательский институт прикладных физических проблем при Белорусском государственном Гуниверситете имени В. И. Ленина

 \mathcal{H} урнал органической химии $mom \, 1\!\!\! XV$, вып. 10 (1979)

УДК 547.539+547.586.1

СИНТЕЗ ПОЛИФТОРАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ, СОДЕРЖАЩИХ 2-ГИДРОГЕКСАФТОРИЗОПРОПИЛЬНУЮ ГРУППУ

B. M. Власов, B. B. Аксенов, $\Gamma.$ $\Gamma.$ Якобсон

Осуществлен синтез соединений типа $Ar_{\rm E}CH(CF_3)_2$ ($Ar_{\rm F}=4-CF_3C_6F_4$, $4-C_5F_4N$ 'и другие) по двухстадийной схеме. На первой стадии при реакции полифторароматических соединений Ar_FF с CH(CF₃)₂COOEt в присутствии CsF или KF и каталитических количеств 18-краун-6-эфира образуются соединения $Ar_{\pi}C(CF_3)_2COOEt$. На второй стадии последовательный процесс гидролиза и декарбоксилирования последних приводит к соединениям Ar_FCH(CF₃)₂, дегидрофторирование которых открыло путь к синтезу полифторированных производных α -метилстирола $Ar_FC(CF_3)=CF_2$.

Полифторароматические соединения, содержащие полифторалкильные группы, получают преимущественно либо преобразованием боковой