ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ЖУРНАЛ

МАРТ-АПРЕЛЬ

УДК 66.048.375

2003 г.

В. Н. Павлечко

АНАЛИЗ ГРАНИЧНЫХ УСЛОВИЙ КОМПЛЕКСНОЙ МОДЕЛИ МАССООБМЕНА В ПРОЦЕССАХ РЕКТИФИКАЦИИ

Найдены граничные условия применимости комплексной модели массообмена к прямоточному, противоточному и перекрестному движению паровой и жидкой фаз при ректификации. Рассмотрены четыре варианта массообмена, являющиеся рубежами комплексной модели. Вычислены предельные значения расстояний h и h₁, на которых выравниваются составы в идеальной и реальной тарелках от места их ввода. Получены соотношения между основными технологическими параметрами процесса ректификации в граничных условиях.

Комплексная модель [1-3] отличается от известных моделей Мерфри и Хаузена [4-6] тем, что составы потоков на идеальной и реальной тарелках выравниваются на некотором расстоянии *h* для пара и *h*₁ для жидкости от места ввода фаз. В модели Мерфри при анализе эффективности по паровой фазе и жидкости эти расстояния принимают соответственно величины

$$h = 0$$
, $h_1 = 1$; (1)

$$h = 1$$
, $h_1 = 0$; (2)

в модели Хаузена

$$h = 0$$
, $h_1 = 0$ (3)

и в гипотетической модели, полученной из анализа возможных вариантов взаимосвязи идеальной и реальной тарелок:

$$h = 1$$
, $h_1 = 1$. (4)

Кроме того, комплексная модель предусматривает вариант разделения идеальной смеси, в котором расстояния h и h_1 равны

$$h = h_1 = 0.5 . (5)$$

В работе [7] в результате анализа взаимосвязи отдельных параметров предложено соотношение

$$h = h_1 = \frac{1}{m+1}$$
 (6)

Таким образом, в комплексной модели расстояния h и h_1 зависят от коэффициента фазового равновесия. Для смесей, близких к идеальным, у которых m стремится к единице, h и h_1 определяются по формуле (5). При разделении смесей с возрастающим коэффициентом фазового равновесия расстояния h и h_1 снижаются и в пределе, когда m стремится к бесконечности, становятся равными нулю, что отражает формула (3). При разделении смеси со снижающимся коэффициентом фазового равновесия расстояния h и h_1 возрастают и при m = 0 становятся равными единице, как это наблюдается в гипотетической модели, к которой относятся равенства (4). Если разделяются смеси, у которых коэффициент фазового равновесия одновременно увеличивается применительно к паровой фазе и уменьшается при анализе массообмена в жидкости, то расстояние h снижается, h_1 возрастает и в итоге они принимают значения в соответствии с (1), что выражает модель Мерфри при анализе эффективности в паровой фазе. При обратной тенденции, пределом которой является формула (2), достигается модель Мерфри при анализе эффективности в жидкости.

Снижение h и возрастание h_1 при увеличении коэффициента фазового равновесия или противоположные их изменения при уменьшении m указывают на противоречивость этих областей комплексной модели и соответствующих граничных случаев – модели Мерфри при анализе эффективности в паровой фазе и жидкости, поскольку массообмен происходит в одной смеси и интенсификация выделения легколетучего компонента из жидкости эквивалентна скорости обогащения этим компонентом паровой фазы, следствием чего должно быть одновременное снижение h и h_1 . Однако эффективность массообмена в модели Мерфри в прямом виде или косвешно получила наибольшее распространение при анализе массообменных процессов, несмотря на ее недостатки, отмечаемые различными исследователями. Поэтому оба варианта модели Мерфри участвуют в анализе наравне с другими.

Модели Мерфри и Хаузена применимы при полном перемешивании жидкости на тарелке или при прямоточном движении потоков. В работах [2, 3] условия взаимосвязи идеальной и реальной тарелок,

TOM 76, № 2

Белорусский государственный технологический университет, г. Минск. Поступила 17.10.2002.

АНАЛИЗ ГРАНИЧНЫХ УСЛОВИЙ КОМПЛЕКСНОЙ МОДЕЛИ МАССООБМЕНА

соответствующие моделям Мерфри и Хаузена, распространены на противоточное и перекрестное движения пара и жидкости. Соответствующие условия взаимосвязи идеальной и реальной тарелок конкретизированы вариантами. Первые два варианта характеризуются условиями модели Мерфри (1) и (2), третий – модели Хаузена (3), четвертый – гипотетической модели (4).

В работах [1-3] выявлено отсутствие реальных значений эффективности в некоторых вариантах массообмена. В связи с этим целесообразно найти пределы применимости комплексной модели в целом и ее отдельных, граничных вариантов, в частности, при прямотоке, противотоке и перекрестном токе пара и жидкости.

Для прямоточного движения фаз из формулы (14) [1] выведена зависимость

$$\frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_{\Pi} = \frac{L}{mV} + (1 - E_{\Pi}) \left(1 - h \frac{L}{mV} - h_1 \right).$$
(7)

Вычитанием из левой и правой частей (7) $E_n L/(mV)$ с учетом уравнения материального баланса $L(x_n - x_{n-1}) = V(y_n - y_{n-1})$ получено соотношение

$$\frac{x_{n-1} - \frac{g_n}{m}}{x_n - x_{n-1}} E_n = (1 - E_n) \left(\frac{L}{mV} + 1 - h \frac{L}{mV} - h_1 \right).$$
(8)

После добавления в обе части формулы (7) Еп найдено выражение

$$\frac{x_n - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_n = \frac{L}{mV} + 1 - (1 - E_n) \left(h \frac{L}{mV} + h_1 \right).$$
(9)

Вычитание из обеих частей (7) $E_{\pi} [L/(mV) - 1]$ приводит к формуле

$$\frac{x_n - \frac{y_n}{m}}{x_n - x_{n-1}} E_n = 1 + (1 - E_n) \left(\frac{L}{mV} - h \frac{L}{mV} - h_1 \right).$$
(10)

Для противоточного движения фаз из формулы (3) [2] выведено соотношение

$$\frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_g = \frac{L}{mV} - E_g - (1 - E_g) \left(h \frac{L}{mV} + h_1 \right).$$
(11)

Таким же образом, как и при прямотоке, при противотоке из (11) получены уравнения, аналогичные (8)-(10):

$$\frac{x_{n-1} - \frac{y_n}{m}}{x_n - x_{n-1}} E_g = (1 - E_g) \left(\frac{L}{mV} + 1 - h \frac{L}{mV} - h_1 \right) - 1 , \qquad (12)$$

$$\frac{x_n - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_g = \frac{L}{mV} - (1 - E_g) \left(h \frac{L}{mV} + h_1 \right), \tag{13}$$

$$\frac{x_n - \frac{y_n}{m}}{x_n - x_{n-1}} E_g = (1 - E_g) \left(\frac{L}{mV} - h \frac{L}{mV} - h_1 \right).$$
(14)

При перекрестном движении фаз из формулы (7) [3] по аналогии с (7)-(10) получены зависимости

$$\frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_k = \frac{L}{mV} - \frac{1}{2} + (1 - E_k) \left(1 - h \frac{L}{mV} - h_1 \right), \tag{15}$$

В. Н. ПАВЛЕЧКО

son and a first	Варианты массообмена							
Отношение	$(h = 0; h_1 = 1)$	$\begin{pmatrix} 2\\ (h=1; h_1=0) \end{pmatrix}$	$(h = 0; h_1 = 0)$	$(h = 1; h_1 = 1)$	идеальная смесь $(h = h_1 = 0.5)$			
			Прямоток		NAM 2 THEY REPORT			
a) $\frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}}$	$\frac{L}{mV}\frac{1}{E_{n1}}$	$\frac{L}{mV} + \frac{1}{E_{n2}} - 1$	$\left(\frac{L}{mV}+1\right)\frac{1}{E_{n3}}-1$	$\frac{L}{mV}$	$\frac{1}{2}\left[\frac{L}{mV}\left(\frac{1}{E_{n,m}}-1\right)+\frac{1}{E_{n,m}}-1\right]$			
$\begin{array}{c} 6) \frac{x_{n-1} - \frac{1}{m}}{x_n - x_{n-1}} \\ x \\ y_{n-1} \end{array}$	$\frac{L}{mV}\left(\frac{1}{E_{n1}}-1\right)$	$\frac{1}{E_{n2}}-1$	$\left(\frac{L}{mV}+1\right)\left(\frac{1}{E_{B3}}-1\right)$	0	$\frac{1}{2}\left(\frac{L}{mV}+1\right)\left(\frac{1}{E_{n,m}}-1\right)$			
$B) \frac{x_n - \frac{m}{m}}{x_n - x_{n-1}}$	$\frac{L}{mV}\frac{1}{E_{\pi 1}} + 1$	$\frac{L}{mV} + \frac{1}{E_{\pi 2}}$	$\left(\frac{L}{mV}+1\right)\frac{1}{E_{n3}}$	$\frac{L}{mV} + 1$	$\frac{1}{2}\left(\frac{L}{mV}+1\right)\left(\frac{1}{E_{n,m}}+1\right)$			
r) $\frac{x_n - m}{x_n - x_{n-1}}$	$\frac{L}{mV}\left(\frac{1}{E_{n1}}-1\right)+1$	$\frac{1}{E_{n2}}$	$\frac{L}{mV}\left(\frac{1}{E_{n3}}-1\right)+\frac{1}{E_{n3}}$	1	$\frac{1}{2} \left[\frac{L}{m V} \left(\frac{1}{E_{n,m}} - 1 \right) + \frac{1}{E_{n,m}} + 1 \right]$			
2/2-1			Противоток	1				
$a) \frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}}$	$\left(\frac{L}{mV}-1\right)\frac{1}{E_{g1}}$	$\frac{L}{mV} = 1$	$\frac{L}{mV}\frac{1}{E_{g3}}-1$	$\frac{L}{mV} - \frac{1}{E_{g4}}$	$\frac{1}{2} \left(\frac{L}{mV} - 1 \right) \left(\frac{1}{E_{g,m}} + 1 \right)$			
$6) \frac{x_{n-1} - \frac{m}{m}}{x_n - x_{n-1}}$	$\frac{L}{mV} \left(\frac{1}{E_{g1}} - 1 \right) - \frac{1}{E_{g1}}$	-1	$\frac{L}{mV}\left(\frac{1}{E_{g3}}-1\right)-1$	$-\frac{1}{E_{g4}}$	$\frac{1}{2}\left[\left(\frac{L}{mV}-1\right)\frac{1}{E_{g,m}}-\frac{L}{mV}-1\right]$			
$\begin{array}{c} x_n - \underline{x_{n-1}} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$\left(\frac{L}{mV}-1\right)\frac{1}{E_{g1}}+1$	$\frac{L}{mV}$	$\frac{L}{mV} \frac{1}{E_{g3}}$	$\frac{L}{mV} - \frac{1}{E_{g4}} + 1$	$\frac{1}{2}\left[\left(\frac{L}{mV}-1\right)\frac{1}{E_{g,m}}+\frac{L}{mV}+1\right]$			
r) $\frac{x_n - m}{x_n - x_{n-1}}$	$\left(\frac{L}{mV}-1\right)\left(\frac{1}{E_{g1}}-1\right)$	0	$\frac{L}{mV}\left(\frac{1}{E_{g3}}-1\right)$	$1 - \frac{1}{E_{g4}}$	$\frac{1}{2}\left(\frac{L}{mV}-1\right)\left(\frac{1}{E_{g,m}}-1\right)$			
<u> Yn-1</u>		Π	ерекрестный ток					
a) $\frac{x_{n-1} - \frac{1}{m}}{x_n - x_{n-1}}$	$\left(\frac{L}{mV} - \frac{1}{2}\right)\frac{1}{E_{k1}}$	$\frac{L}{mV} + \frac{1}{2E_{k2}} - 1$	$\left(\frac{L}{mV} + \frac{1}{2}\right)\frac{1}{E_{\lambda3}} - 1$	$\frac{L}{mV} - \frac{1}{2E_{k4}}$	$\frac{1}{2} \left[\frac{L}{mV} \left(\frac{1}{E_{k,m}} + 1 \right) - 1 \right]$			
$6) \frac{x_{n-1} - \frac{y_n}{m}}{x_n - x_{n-1}}$	$\frac{L}{mV} \left(\frac{1}{E_{k1}} - 1 \right) - \frac{1}{2E_{k1}}$	$\frac{1}{2E_{k2}} - 1$	$\frac{L}{mV}\left(\frac{1}{E_{k3}}-1\right)+\frac{1}{2E_{k3}}-1$	$-\frac{1}{2E_{k4}}$	$\frac{1}{2}\left[\frac{L}{mV}\left(\frac{1}{E_{\rm k,m}}-1\right)-1\right]$			
$x_n - \frac{y_{n-1}}{m}$ $\frac{x_n - x_{n-1}}{x_n - x_{n-1}}$	$\left(\frac{L}{mV} - \frac{1}{2}\right)\frac{1}{E_{k1}} + 1$	$\frac{L}{mV} + \frac{1}{2E_{k2}}$	$\left(\frac{L}{mV} + \frac{1}{2}\right)\frac{1}{E_{k3}}$	$\frac{L}{mV} - \frac{1}{2E_{k4}} + 1$	$\frac{1}{2} \left[\frac{L}{mV} \left(\frac{1}{E_{k,m}} + 1 \right) + 1 \right]$			
$x_n - \frac{y_n}{m}$ $x_n - x_{n-1}$	$\frac{L}{mV}\left(\frac{1}{E_{k1}}-1\right)-\frac{1}{2E_{k1}}+1$	$\frac{1}{2E_{k2}}$	$\frac{L}{mV}\left(\frac{1}{E_{k3}}-i\right)+\frac{1}{2E_{k3}}$	$1 - \frac{1}{2E_{k4}}$	$\frac{1}{2} \left[\frac{L}{mV} \left(\frac{1}{E_{k,m}} - 1 \right) + 1 \right]$			

Габлица 1. Граничные условия комплекси	юй модели для различных форм организации потоков
--	--

$$\frac{x_{n-1} - \frac{5n}{m}}{x_n - x_{n-1}} E_k = (1 - E_k) \left(\frac{L}{mV} + 1 - h \frac{L}{mV} - h_1 \right) - \frac{1}{2},$$
(16)

$$\frac{x_n - \frac{y_{n-1}}{m}}{x_n - x_{n-1}} E_k = \frac{L}{mV} + \frac{1}{2} - (1 - E_k) \left(h \frac{L}{mV} + h_1 \right), \tag{17}$$

$$\frac{x_n - \frac{y_n}{m}}{x_n - x_{n-1}} E_k = (1 - E_k) \left(\frac{L}{mV} - h \frac{L}{mV} - h_1 \right) + \frac{1}{2} .$$
(18)

При подстановке в уравнения (7)-(18) значений расстояний h и h_1 из (1)-(5) выведены величины отношений разности концентраций для всех вариантов массообмена при прямотоке, противотоке и перекрестном токе взаимодействующих фаз (табл. 1).

11

Из табл. 1 видно, что при прямотоке рассматриваемые отношения разности концентраций во всех вариантах имеют положительные значения. Некоторое сомнение в этом плане вызывает во втором варианте

АНАЛИЗ ГРАНИЧНЫХ УСЛОВИЙ КОМПЛЕКСНОЙ МОДЕЛИ МАССООБМЕНА

отношение б), которое может быть отрицательным при $E_{\rm II} > 0.5$, что указывает на определенные ограничения при использовании этого варианта.

В четвертом варианте отношения разностей концентраций не зависят от эффективности. Равенство отношений 6) нулю и г) единице совместно с условиями равновесия потоков после идеальной тарелки $y_n^* = mx_{n-1}^*$ указывает на то, что в четвертом варианте реальная тарелка аналогична идеальной. Следовательно, комплексная модель при прямотоке справедлива во всем диапазоне изменения расстояний h и h_1 от нуля до величин, меньших единицы.

Данные табл. 1 показывают, что при противотоке во втором варианте отношения разности концентраций не зависят от эффективности и она не может быть определена. Равенство отношений 6) минус единице и г) нулю в совокупности с условием равновесия паровой и жидкой фаз на идеальной тарелке $y_n^* = mx_{n-1}^*$ показывает идентичность идеальной и реальной тарелок в этом варианте. Кроме того, отрицательное значение отношения 6) указывает, что во втором варианте $y_n/m > x_{n-1}$.

В четвертом варианте отрицательные значения имеют отношения концентраций 6) и г) и могут быть такими же отношения а) и в) при L/(mV) < 1 и $E_g [L/(mV) + 1] < 1$ соответственно. Это вызвано тем, что коэффициент фазового равновесия стремится к нулю, h и $h_1 - \kappa$ единице и концентрация одного из компонентов смеси в паровой фазе, деленная на m, превышает соответствующее содержание этого компонента в жидкости.

В первом, третьем вариантах массообмена и в варианте разделения идеальной смеси $(h = h_1 = 0.5)$ отрицательные отношения разностей концентраций в явном виде не просматриваются. Однако применительно к первому варианту необходимо отметить следующее. Для этого варианта наблюдается совпадение составов пара, поступающего на идеальную и реальную тарелки, и жидкости, стекающей с них. На графике y-x (рис. 1) равновесная линия проходит через точки A и C с координатами y_{n-1}^* , x_{n-1} и y_n , x_n соответственно. Рабочая прямая проходит через точки A и B с координатами y_{n-1} , x_n соответственно. С увеличением эффективности до единицы точка B, перемещаясь по прямой AB, совпадет с точкой C, принадлежащей

Отношение	Форма организации потоков							
Отпошение	Прямоток	Противоток	Перекрестный ток					
a) $\frac{x_{n-1} - \frac{y_{n-1}}{m}}{x_n - x_{n-1}}$	$\frac{\frac{L}{mV} + 1 - E_{\Pi}}{\left(\frac{L}{mV} + 1\right)(1 - E_{\Pi})}$	$\frac{\frac{L}{mV} - E_{g}}{\left(\frac{L}{mV} + 1\right)(1 - E_{g})}$	$\frac{\frac{L}{mV} + \frac{1}{2} - E_{k}}{\left(\frac{L}{mV} + 1\right)(1 - E_{k})}$					
$6) \frac{x_{n-1} - \frac{y_n}{m}}{x_n - x_{n-1}}$	1	$\frac{\frac{L}{mV} - \left(\frac{L}{mV} + 1\right)E_{g}}{\left(\frac{L}{mV} + 1\right)(1 - E_{g})}$	$\frac{\frac{L}{mV} + \frac{1}{2} - \left(\frac{L}{mV} + 1\right)E}{\left(\frac{L}{mV} + 1\right)(1 - E_{k})}$					
$\begin{array}{c} x_n - \frac{y_{n-1}}{m} \\ x_n - x_{n-1} \end{array}$	$\frac{1}{1-E_{n}}$	$\frac{\frac{L}{mV}}{\left(\frac{L}{mV}+1\right)(1-E_g)}$	$\frac{\frac{L}{mV} + \frac{1}{2}}{\left(\frac{L}{mV} + 1\right)(1 - E_{k})}$					
$r) \frac{x_n - \frac{y_n}{m}}{x_n - x_{n-1}}$	$\frac{\frac{L}{mV}(1-E_{\rm II})+1}{\left(\frac{L}{mV}+1\right)(1-E_{\rm II})}$	$\frac{\frac{L}{mV}}{\frac{L}{mV}+1}$	$\frac{\frac{L}{mV}\left(1-E_{k}\right)+\frac{1}{2}}{\left(\frac{L}{mV}+1\right)\left(1-E_{k}\right)}$					
NUMBER OF STREET								

T	а б	Л	И	ц	a	2.	Предельные	значения	h	И	h1	B	комплексной м	иодели
---	-----	---	---	---	---	----	------------	----------	---	---	----	---	---------------	--------

(сплошные линии) тарелках: $a - x_n > y_n/m$, $x_{n-1} < y_{n-1}/m$; $b - x_n < y_n/m$,

равновесной линии. Если допустим прямолинейность равновесной линии на участке изменения концентраций на тарелке, то получим совпадение рабочей и равновесной линий, т. е. одинаковый угол наклона этих линий. Вследствие этого отношения разности концентраций а) и г) равны нулю и определение эффективности в этом варианте, как и во втором, невозможно. Данное обстоятельство в совокупности с некоторыми ограничениями второго варианта при прямотоке (отношение б)) подчеркивает нелогичность условий взаимосвязи идеальной и реальной тарелок, свойственных модели Мерфри, и исключает первый и второй варианты массообмена при противотоке из числа рабочих моделей.

Таким образом, при противотоке предельными случаями следует считать третий и четвертый варианты. Разделение идеальной смеси можно рассматривать как промежуточное состояние комплексной модели между этими вариантами.

При перекрестном токе (табл. 1) в четвертом варианте отрицательное значение имеет отношение 6) и возможна аналогичная величина для отношения г) при $E_k > 0.5$, что указывает на превышение y_n/m над x_{n-1} а при $E_k < 0.5$ – также над x_n . Во втором варианте возможно отрицательное значение отношения 6) при $E_k > 0.5$. Следовательно, расстояния h и h_1 не могут быть равными единице, а должны принимать меньшие значения. Прочие отношения в указанных и других вариантах предполагаются положительными.

При противотоке и перекрестном токе, как отмечено выше, возможны отрицательные значения отношений разностей концентраций а)-г). В связи с этим целесообразно найти предельные значения расстояний hи h_1 для указанных форм организации потоков, включая прямоток, приравняв нулю все рассматриваемые отношения. Искомые величины, выведенные из правых частей формул (7)-(18), приведены в табл. 2.

При прямотоке предельные значения h и h_1 равны единице (отношение 6)) или превышают ее, что подтверждает отсутствие отрицательных отношений (табл. 2). Следовательно, при прямотоке эти расстояния могут принимать любые реальные значения, за исключением предельной единицы.

АНАЛИЗ ГРАНИЧНЫХ УСЛОВИЙ КОМПЛЕКСНОЙ МОДЕЛИ МАССООБМЕНА

Omiomore	Паранота	Форма организации потоков					
Отношение	Параметр	Прямоток	Противоток	Перекрестный ток			
$x_{n-1} - \frac{y_{n-1}}{m}$	$\frac{L}{mV}$	$-\frac{m(1-E_{\rm n})}{m+E_{\rm n}}$	$\frac{mE_g+1}{m+E_g}$	$\frac{mE_{\rm k}-\frac{m-1}{2}}{m+E_{\rm k}}$			
a) $\frac{1}{x_n - x_{n-1}}$	E	$\frac{m + \frac{L}{V}}{m - \frac{L}{mV}}$	$\frac{\frac{L}{V}-1}{m-\frac{L}{mV}}$	$\frac{\frac{L}{V} + \frac{m-1}{2}}{m - \frac{L}{mV}}$			
$x_{n-1} = \frac{y_n}{m}$	$\frac{L}{mV}$	-1	$\frac{mE_g+1}{m\left(1-E_g\right)}$	$\frac{mE_{\rm k}-\frac{m-1}{2}}{m\left(1-E_{\rm k}\right)}$			
$6) \frac{m}{x_n - x_{n-1}}$	E	1	$\frac{\frac{L}{V}-1}{\frac{L}{V}+m}$	$\frac{\frac{L}{V} + \frac{m-1}{2}}{\frac{L}{V} + m}$			
$x_n - \frac{y_{n-1}}{m}$	$\frac{L}{mV}$	-1	$\frac{1-E_g}{m+E_g}$	$-\frac{E_{\rm k}+\frac{m-1}{2}}{m+E_{\rm k}}$			
$B) \frac{1}{x_n - x_{n-1}}$	Е	-777	$-\frac{\frac{L}{V}-1}{\frac{L}{m V}+1}$	$-\frac{\frac{L}{V} + \frac{m-1}{2}}{\frac{L}{mV} + 1}$			
$x_n - \frac{y_n}{m}$	$\frac{L}{mV}$	$-\frac{m+E_{\rm n}}{m\left(1-E_{\rm n}\right)}$	$\frac{1}{m}$	$-\frac{E_{k} + \frac{m-1}{2}}{m(1-E_{k})}$			
$r) \frac{m}{x_n - x_{n-1}}$	Е	$\frac{\frac{L}{V} + m}{\frac{L}{V} - 1}$	1	$\frac{\frac{L}{V} + \frac{m-1}{2}}{\frac{L}{V} - 1}$			

Та	б	Л	И	Ц	a	3.	Предельные	значения	технологических	параметров
----	---	---	---	---	---	----	------------	----------	-----------------	------------

При противоточном и перекрестном движениях пара и жидкости возможны предельные величины h и h_1 , меньшие единицы, что указывает на возможность получения отрицательных отношений разностей концентраций в случае превышения этими расстояниями значений, указанных в табл. 2. При этом при противотоке и перекрестном токе возможны ситуации, приведенные на рис. 2, когда одно из отношений является положительным, а второе – отрицательным. Такая же ситуация наблюдается и для других отношений разностей концентраций, которые на рис. 2 не приведены. Это обстоятельство следует учитывать при выборе определяющих величин расстояний h и h_1 , которые, вероятно, должны быть меньше минимального (отношение 6)) при коэффициенте фазового равновесия, превышающем единицу, и больше максимального (отношение в)) – при m < 1. В промежутке между указанными значениями расстояний предпочтение, возможно, следует отдавать отношению или его числителю, используемому в текущих расчетах.

Следует подчеркнуть, что сами расстояния h и h_1 рассчитываются по формуле (6), а проведенный анализ необходим для определения рубежей комплексной модели. При подстановке значений этих расстояний из (6) в формулы (7)-(18) получим предельные зависимости между эффективностью и L/(mV) (табл. 3) для рассматриваемых форм орга изации потоков. В частности, при прямотоке нет ограничений на величины L/(mV), поскольку это отношение заведомо больше значений, указанных в табл. 3. Эффективность при прямотоке также может изменяться в своих естественных пределах без каких-либо ограничений. При противотоке и перекрестном токе важно следить за соотношением эффективности и L/(mV). Превышение этих величин над табличными значениями указывает на возможность получения отрицательных отношений разности концентраций. В целом с помощью данных табл. 3 можно оценить эффективность массообмена и отношение потоков.

Таким образом, результаты проведенного анализа дают возможность предварительной оценки величин важнейших технологических параметров и определяют границы применимости комплексной модели.

В. Н. ПАВЛЕЧКО

Обозначения

E - эффективность тарелки; h и h₁ - безразмерные расстояния от места ввода пара и жидкости соответственно до поверхности равенства концентраций фаз на идеальной и реальной тарелках; L - молярный поток жидкости; т - коэффициент фазового равновесия; V - молярный поток пара; x и y - концентрации легколетучего компонента соответственно в жидкости и паре. Индексы: g - противоток; k - перекрестный ток; m - значения параметров при h = h₁ = 0.5; n - номер рассматриваемой тарелки; n - 1 - номер предыдущей тарелки по ходу движения пара; п прямоток; * - идеальные условия.

Литература

- Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 1. С. 50-56.
 Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 1. С. 57-61.
 Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 2. С. 43-47.
 Murphree E. V. // Ind. Eng. Chem. 1925. Vol. 17, No. 7. Pp. 747-750.
 Hausen H. // Chem. Ing Tech. 1953. Bd. 25, No. 10. Pp. 595-597.
 Medina A. G., Ashton N., and McDermott C. // Chem. Eng. Sci. 1979. Vol. 34, No. 9. Pp. 1105-1112.
 Павлечко В. Н. // ИФЖ. 2002. Т. 75, № 1. С. 112-116.