ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ЖУРНАЛ

МАРТ-АПРЕЛЬ

УДК 66.048.375

2003 г.

В. Н. Павлечко

СРАВНЕНИЕ ЭФФЕКТИВНОСТИ МАССООБМЕНА В КОМПЛЕКСНОЙ МОДЕЛИ ПО ЛЕГКО- И ТРУДНОЛЕТУЧИМ КОМПОНЕНТАМ

Проведено сравнение эффективности массообмена в комплексной модели для двух вариантов представления текущего уравнения равновесной линии: y = mx и y = ax + b. Иа основе обработки экспериментальных данных по разделению смеси бензол-толуол при перекрестном движении потоков показано, что первое уравнение пригодно только для небольших изменений концентраций на ступени массообмена, а второе имеет более универсальный характер.

В работах [1-3] приведены общие положения комплексной модели массообмена применительно к процессам ректификации, а также основные расчетные зависимости. Она отличается от известных моделей Мерфри и Хаузена [4-7] условиями связи идеальной и реальной тарелок, когда составы потоков на этих тарелках выравниваются на некотором расстоянии h для пара и h_1 для жидкости от места их ввода. Изменение расстояний h и h_1 предложено [8] принять одинаковым и находить в зависимости от коэффициента фазового равновесия

$$h = h_1 = \frac{1}{m+1}$$
, (1)

что придает модели динамичный характер и преобразует расчетные формулы в зависимости от изменяющегося по высоте колонны коэффициента фазового равновесия.

В настоящей работе доказывается, что в комплексной модели эффективность массообмена имеет одинаковые значения при расчете по параметрам легко- и труднолетучего компонентов.

Текущее уравнение равновесной линии может быть представлено выражениями

$$y = mx , (2)$$

$$u = ax + b av{3}$$

Текущий тангенс угла наклона равновесной линии в (2) равен коэффициенту фазового равновесия. Первая из приведенных выше формул проще в использовании, однако ее применение может привести к значительным погрешностям, особенно при большой разности концентраций компонентов, поступающих и выходящих из ступени контакта.

Рассмотрим *n*-ю тарелку в колонне полного орошения, в которой равны мольные потоки пара и жидкости (L = V). Рабочая линия такой колонны на диаграмме y-x представлена диагональю ON (рис. 1). Проведем из начала координат прямые OK и OM таким образом, чтобы они пересекали равновесные кривые OAN и OBN в точках A и B, характеризующихся содержанием соответственно легко- и труднолетучего компонентов в жидкости x_{n-1} и x'_{n-1} . Причем $x_{n-1} = 1 - x'_{n-1}$. Прямые ОК и ОМ построены по текущим уравнениям

равновесия для *n*-й тарелки. При их применении разность $x_n - \frac{y_{n-1}}{m}$, используемая в расчетных зависимостях и представленная отрезком СР на рис. 1, для легколетучего компонента получается несколько заниженной

по сравнению с истинным значением (отрезком CD) на величину Δ , а разность $x'_n - \frac{y_{n-1}}{m}$ (отрезок FH) для

труднолетучего компонента - намного завышенной по сравнению с истинным значением (отрезком FG) на величину ∆'. Использование неточных величин указанных или им подобных разностей в расчетных процедурах приводит к значительным погрешностям вычислении.

При использовании формулы (3) текущие уравнения равновесия (см. рис. 2) для п-й тарелки представлены прямыми AC и BD соответственно для легко- и труднолетучего компонентов. Они построены в виде касательных к кривым равновесия в точках А и В, соответствующих концентрациям компонентов после тарелки x_{n-1} и x_{n-1} , и отсекают на оси ординат отрезки соответственно b и b'. В этом случае разности Δ и ∆ получаются близкими к истинным значениям, следовательно, применение (3) позволяет минимизировать погрешности вычислений.

Проверка рассмотренных особенностей комплексной модели выполнена с использованием литературных экспериментальных данных [9] по разделению смеси бензол-толуол. Исследования проведены в режиме полного орошения в колонне с тремя пакетами сетчатой насадки, над каждым из которых устанавливались

Белорусский государственный технологический университет, г. Минск. Поступила 17.10.2002.

TOM 76, № 2

распределители жидкости. В пределах каждой ступени пар перемещался горизонтально и движение паровой и жидкой фаз было перекрестным. Из-за отсутствия экспериментальных значений концентраций паровой фазы на входе и выходе из верхней секции они приняты равными соответствующим величинам в жидкости на выходе и входе в нее, поскольку состав пара, поступающего в дефлегматор, равен составу жидкости, выходящей из него, и расходы обоих потоков одинаковы. Такие же соображения приняты при выборс состава паровой фазы для секций, расположенных ниже. На средней секции достигнуты концентрации жидкости, превышающие возможности одной теоретической ступени, в связи с чем показатели этой секции при анализе не использованы.

С помощью данных [10] для смеси бензол-толуол найдена равновесная зависимость

СРАВНЕНИЕ ЭФФЕКТИВНОСТИ МАССООБМЕНА В КОМПЛЕКСНОЙ МОДЕЛИ

<i>x</i> _n , %		x _{n-1} , %				E.	E	$E_{\rm k}-E_{\rm k}$
мас.	мол.	мас.	мол.		114	Lk	L'k	Ek
			1	Верхняя секци	LR .			
54.5	58.56	49.0	53.13	1.3856	0.5629	0.1666	0.0844	49.35
63.0	66.76	58.4	62.35	1.2906	0.5188	0.1468	0.0716	51.24
67.2	70.73	65.5	69.13	1.2279	0.4897	0.0610	0.0262	56.96
58.3	62.25	52.5	56.59	1.3485	0.5457	0.1759	0.0900	48.81
				Нижняя секци				11.0
17.9	20.46	16.5	18.19	1.8837	0.7940	0.0810	0.0377	53.49
30.9	34.53	26.1	29.41	1.6995	0.7085	0.1803	0.0952	47.21
28.0	31.45	23.5	26.60	1.7454	0.7299	0.1805	0.0956	47.06
24.2	27.36	21.8	24.75	1.7770	0.7445	0.1091	0.0524	52.02
30.5	34.11	24.4	27.57	1.7292	0.7224	0.2272	0.1290	43.20
37.1	41.23	29.3	32.83	1.6465	0.6740	0.2543	0.1504	40.88
21.3	24.20	18.4	21.01	1.8439	0.7755	0.1440	0.0727	49.52

Таблица 1. Результаты расчета по формулам (7) и (8)

среднее отклонение от экспериментальных данных в которой не превышает ±0.37%.

С учетом y' = 1 - y и x = 1 - x из (4) выведено аналогичное соотношение для труднолетучего компонента

$$y' = \frac{0.48 + 0.1x}{1.25 - 0.67x} x'$$
(5)

справедливое с точностью, не превышающей 1.46%. В (4) и (5) концентрации компонентов в жидкости представлены в мольных долях.

Из работы [3] известно, что эффективность массообмена определяется по формуле

$$E_{k} = \frac{\frac{L}{mV} + 0.5 - h \frac{L}{mV} - h_{1}}{\frac{x_{n} - \frac{y_{n-1}}{m}}{x_{n} - x_{n-1}} - h \frac{L}{mV} - h_{1}}$$
(6)

В результате совместного решения (1) и (6) с учетом особенностей рассматриваемых экспериментальных данных $(L = V, y_n = x_n, y_{n-1} = x_{n-1})$ для легколетучего компонента получено

$$E_{k} = \frac{m (m+1)}{2 (m-1)} \frac{x_{n} - x_{n-1}}{x_{n}}$$
(7)

Аналогичный вид формула имеет и для труднолетучего компонента

$$E_{k} = \frac{m (m + 1)}{2 [(m')^{2} - 1]} \frac{x_{n} - x_{n-1}}{x_{n}}$$
(8)

При подстановке экспериментальных концентраций, значений m и m, рассчитанных по (4) и (5), и соотношений m = y/x и m = y/x, в которых использованы содержания компонентов в жидкости после тарелки, соответственно в (7) и (8) получены величины эффективности, приведенные в табл. 1.

Как видно из табл. 1, эффективности, определенные по легко- и труднолетучему компонентам с использованием формулы (2), отличаются примерно в полтора раза. Причем на погрешность оказывают влияние не только разность концентраций на тарелке, но и сама величина концентрации.

Наклоны текущих равновесных линий для уравнения (3) получены из (4) и (5) как соответствующие производные

$$a = \frac{dy}{dx} = \frac{0.783 - 0.116x - 0.067x^2}{(0.58 + 0.67x)^2}$$
(9)

ИФЖ. Том 76, № 2

к _п , мол.%	<i>x</i> _{n-1} , мол.%	а	a	Ь	Ь	E _k	Ek	$\frac{E_{\mathbf{k}}-E_{\mathbf{k}}}{E_{\mathbf{k}}}$
1			/1	$x = x_{n-1}$			- instr	L LINE -
			E	Зерхняя секц	ия			
58.56	53.13	0.8019	0.7638	0.3101	-0.0942	0.1122	0.1012	9.75
66.76	62.35	0.6877	0.6561	0.3759	-0.0517	0.0906	0.0799	11.85
70.73	69.13	0.6164	0.5901	0.4227	-0.0310	0.0326	0.0300	8.00
62.25	56.59	0.7564	0.7206	0.3351	-0.0759	0.1167	0.1034	11.39
			ŀ	Іижняя секци	เя			
20.46	18.19	1.5193	1.482	0.0689	-0.5548	0.0674	0.0688	-1.99
34.53	29.41	1.2307	1.1846	0.1379	-0.3361	0.1449	0.1475	-1.79
31.45	26.60	1.3001	1.2546	0.1184	-0.3852	0.1481	0.1534	-3.58
27.36	24.75	1.3487	1.3039	0.1060	-0.4209	0.0874	0.0885	-1.25
34.11	27.57	1.2754	1.2297	0.1251	-0.3674	0.1902	0.1998	-5.04
41.23	32.83	1.1527	1.1065	0.1621	-0.2838	0.2101	0.2136	-1.65
24.20	21.01	1.4546	1.4118	0.0818	-0.5026	0.1209	0.1270	-4.99
				$x = x_n$				
			Б	ерхняя секци	LR .			
58.56	53.13	0.7321	0.6977	0.3491	-0.0669	0.1034	0.0908	12.20
66.76	62.35	0.6403	0.6121	0.4065	-0.0374	0.0849	0.0736	13.32
70.73	69.13	0.6009	0.5759	0.4335	-0.0271	0.0318	0.0292	8.27
62.25	56.59	0.6888	0.6572	0.3752	-0.0521	0.1074	0.0926	13.81
			h	Іижняя секци	IR			
20.46	18.19	1.4712	1.4288	0.0783	-0.5158	0.0654	0.0661	-0.97
34.53	29.41	1.1164	1.0704	0.1744	-0.2606	0.1333	0.1300	2.48
31.45	26.60	1.1835	1.1372	0.1522	-0.3040	0.1367	0.1356	0.76
27.36	24.75	1.2809	1.2352	0.1236	-0.3713	0.0834	0.083	0.52
34.11	27.57	1.1253	1.0792	0.1713	-0.2662	0.1718	0.1689	1.72
41.23	32.83	0.9908	0.9464	0.2217	-0.1863	0.1863	0.1744	6.36
24.20	21.01	1.3636	1.3189	0.1023	-0.4321	0.1143	0.1168	-2.19
			x	$= (x_n + x_{n-1})/$	2			
			В	ерхняя секци	я			
58.56	53.13	0.7660	0.7297	0.3297	-0.0796	0.1080	0.0960	11.06
66.76	62.35	0.6635	0.6336	0.3912	-0.0441	0.0879	0.0768	12.64
70.73	69.13	0.6086	0.5830	0.4281	-0.0290	0.0322	0.0296	8.14
62.25	56.59	0.7216	0.6879	0.3552	-0.0632	0.1122	0.0980	12.70
			h	Іижняя секци	R			
20.46	18.19	1.4950	1.4532	0.0736	-0.5350	0.0664	0.0674	-1.48
34.53	29.41	1.1717	1.1255	0.1560	-0.2962	0.1395	0.1389	0.42
31.45	26.60	1.2399	1.1939	0.1352	-0.3425	0.1427	0.1447	-1.35
27.36	24.75	1.3142	1.2689	0.1147	-0.3954	0.0855	0.0858	-0.36
34.11	27.57	1.1972	1.1511	0.1480	-0.3132	0.1818	0.1845	-1.51
41.23	32.83	1 0677	1 0221	0 1917	-0.2307	0 1993	0 1940	2.64

В. Н. ПАВЛЕЧКО

 $a' = \frac{dy}{dx} = \frac{0.6 + 0.116x' + 0.067(x)^2}{(1.25 - 0.67x')^2}$ (10)

а отрезки, отсекаемые этими прямыми на оси ординат, - из совместного решения (3), (4), (6) и (3), (5), (7) соответственно

СРАВНЕНИЕ ЭФФЕКТИВНОСТИ МАССООБМЕНА В КОМПЛЕКСНОЙ МОДЕЛИ

b

$$=\frac{0.9625x^2}{\left(0.58+0.67x\right)^2}\,,$$
(11)

$$b' = -\frac{0.3126 + 0.134x'}{(1.25 - 0.67x)^2} (x')^2.$$
(12)

С учетом методологии работы [3], формулы (6), m = a и m = a, а также указанных выше особенностей рассматриваемых экспериментальных данных получены зависимости соответственно по легко- и труднолетучему компонентам

$E_{\rm b} = \frac{a(x_n - x_{n-1})}{2\left(\frac{a^2 - 1}{a+1}x_n + b\right)},$	(13)
$a'(x'_n - x'_{n-1})$	
$E_{k} = \frac{2\left[\frac{(a)^{2} - 1}{a + 1}x_{n} + b'\right]}{2\left[\frac{(a)^{2} - 1}{a + 1}x_{n} + b'\right]}$	(14)

Результаты расчетов по формулам (9)-(14) приведены в табл. 2. При этом в (9)-(12) в качестве текущих значений х также применены данные о составе жидкости после тарелки.

Из табл. 2 видна удовлетворительная сходимость эффективностей, определенных по легко- и труднолетучему компонентам. Причем меньшие отклонения наблюдаются при малых величинах легколетучего компонента.

Применение в качестве текущей концентрации компонентов в жидкости в уравнениях (3), (9)-(12) значений x_n и $(x_n + x_{n-1})/2$ приводит к эффективностям, незначительно отличающимся от данных, полученных при использовании для этих целей величин x_{n-1} (табл. 2). Близость результатов расчетов, особенно для одной и той же тарелки, указывает на то, что эти, хотя и сравнительно небольшие, но все же погрешности, обусловлены скорее всего неточностью формул (4) и (5), у которых отклонение от одних и тех же экспериментальных величин различно. Сопоставление данных табл. 2 показывает, что средние концентрации приводят к эффективностям, а также погрешностям их расчета по легко- и труднолетучему компонентам, находящимся между соответствующими значениями, полученными с применением составов жидкости в начале и конце ступени контакта.

В целом данные таблиц подтверждают возможность использования комплексной модели для расчета эффективности массообмена по обоим компонентам. Применение формулы (2) в качестве текущего уравнения равновесия пригодно только для небольших разностей составов потоков до и после ступени контакта, поскольку в противном случае возможны эффективности или другие расчетные параметры, значительно разнящиеся по легко- и труднолетучему компонентам. В отличие от (2) выражение (3) в таком же качестве позволяет получать приемлемые результаты независимо от величин концентраций потоков на тарелке.

Обозначения

а - тангенс угла наклона касательной к равновесной линии; b - отрезок, отсекаемый касательной к равновесной линии на оси ординат; Е – эффективность тарелки; h и h₁ – безразмерные расстояния от места ввода пара и жидкости соответственно до поверхности равенства концентраций фаз на идеальной и реальной тарелках; L - молярный поток жидкости; т - коэффициент фазового равновесия; V - молярный поток пара; x и y - концентрации легколетучего компонента соответственно в жидкости и паре. Индексы: k - перекрестный ток; n - номер рассматриваемой тарелки; n-1 - номер предыдущей тарелки по ходу движения пара; ' - труднолетучий компонент.

Литература

1. Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 1. С. 50-56.

- Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 1. С. 57-61.
- 3.
- 5
- Павлечко В. Н. // ИФЖ. 2001. 1. 74, № 1. С. 57-61. Павлечко В. Н. // ИФЖ. 2001. Т. 74, № 2. С. 43-47. Murphree E. V. // Ind. Eng. Chem. 1925. Vol. 17, No. 7. Pp. 747-750. Hausen H. // Chem. Ing. Tech. 1953. Bd. 25, No. 10. Pp. 595-597. Medina A. G., Ashton N., and McDermott C. // Chem. Eng. Sci. 1979. Vol. 34, No. 9. Pp. 1105-1112. Savcovic-Stevanovic J. // Separ. Sci. Technol. 1984. Vol. 19, Nos. 4-5. Pp. 283-285. 6
- 7.
 - 8. Павлечко В. Н. //ИФЖ. 2002. Т. 75, № 1. С. 112-116.

9. Богатых К. Ф., Маннуллин М. Н., Артемьев А. Ф. // Химия и технология топлив и масел. 1987. № 9. С. 22-23.

10. Коган В. Б., Фридман В. М., Кафаров В. В. Равновесие между жидкостью и паром: Справочное пособие. М.-Л., 1966. С. 733-785.