ЛИТЕРАТУРА

- 1. Касперович А.В. Модифицирование поверхности резины ионно-ассистированным осаждением покрытий: Дис. ... канд. техн. наук: 05.02.01.— Минск, 2002. 120 с.
- 2. Ташлыков И.С., Касперович А.В., Ситнов А.А. Влияние состава межфазной области на адгезионную устойчивость покрытий, осажденных на резину в условиях радиационного ассистирования // Физика и химия обработки материалов. 2000. № 5. С. 50—53.
- 3. Tegen N., Wartusch J., Merkel K.-H. Chemical and energy deposition effect of keV ions on the adhesion of Cu films onto polymers // Nucl. Instr. and Meth. B. -1993.-V.80/81.-P.1055-1058.
- 4. Комаров Ф.Ф., Кумахов М.А., Ташлыков И.С. Неразрушающий анализ поверхностей твердых тел ионными пучками. Мн.: Университетское, 1987. 256 с.
- 5. Кошелев Ф.Ф., Корнев А.Е., Климов Н.С. Общая технология резины. М.: Химия, 1968. –560 с.
- 6. Руководство к практическим работам по коллоидной химии / О.Н. Григоров, И.Ф. Карнова, З.П. Козьмина и др. М.-Л.: Химия, 1964. 332 с.

УДК 66.061

Н.С. Бойко, студент; А.И. Юсевич, ассистент; Е.И. Грушова, доцент

ИНТЕНСИФИКАЦИЯ ОЧИСТКИ МИНЕРАЛЬНЫХ МАСЕЛ N-МЕТИЛПИРРОЛИДОНОМ

Influence of dimethylsulfoxide addition on N-methylpyrrolidone properties has been studied.

Для обеспечения надежности, долговечности и эффективности эксплуатации механизмов предлагается широкий ассортимент смазочных материалов, позволяющий подбирать их для каждого механизма и конкретных условий его работы [1, 2]. Особенно высокие требования предъявляются к моторным маслам, так как развитие моторостроения идет в направлении ужесточения термических режимов работы двигателей с целью повышения их экономичности.

Получение качественных масел – сложное производство, включающее ряд непростых, последовательно проводимых процессов: вакуумную разгонку мазута, деасфальтизацию, селективную очистку, гидроочистку, контактную очистку, депарафинизацию [3]. Указанные стадии процесса могут использоваться в различной последовательности, дополняться такими процессами, как гидрогенизация, или не включать такие процессы, как контактная очистка.

Выбор схемы производства минеральных масел зависит от их типов (дистиллятные, остаточные или те и другие); получаемых продуктов (приготовлените компонентов или сразу товарных масел); состава сырья [2]. Однако в любом варианте всегда предусматривается очистка масляных фракций методом жидкостной экстракции с применением селективных растворителей. Поэтому от эффективности проведения этой стадии во многом зависят свойства получаемых масел-компонентов.

Основными промышленными растворителями селективной очистки в течение длительного времени являются фенол и фурфурол, которым наряду с положительными

свойствами присущи некоторые недостатки: токсичность, сверхвысокая растворяющая способность и другие [4].

На данный момент известно много разработок, согласно которым предлагается осуществить замену этих растворителей на другие экстрагенты [4, 5] или использовать смеси растворителей. Однако в промышленности пока находит применение только одно направление, а именно замена фенола и фурфурола на N-метилпирролидон. Пригодность для селективной очистки как парафинового, так и нафтенового сырья, большая растворяющая способность, высокая избирательность и селективность, низкая токсичность делают его перспективным растворителем селективной очистки минеральных масел [6]. Но и при использовании данного растворителя остаются достаточно существенными потери ценных компонентов базовых масел с экстрактом.

В связи с растущей потребностью в нефтепродуктах, и в частности высококачественных минеральных маслах, а также снижением прироста объема переработки нефти задачей данной работы являлось повышение эффективности очистки масляных фракций нефти методом жидкостной экстракции.

Согласно [7, 8], улучшить селективные свойства промышленного экстрагента фенола можно путем введения малых добавок полярных соединений, т. к. они благоприятно воздействуют на молекулярное силовое поле растворителя и, соответственно, на его экстракционные свойства.

В настоящей работе ставилась задача улучшить экстракционные свойства нового промышленного экстрагента N-метилпирролидона за счет интенсификации его свойств добавками малых количеств высокополярного вещества — диметилсульфоксида.

В качестве сырья для экстракции были использованы вакуумные дистилляты VD-2, VD-4 и деасфальтизат, полученные на нефтеперерабатывающем заводе ПО "Нафтан" (город Новополоцк). Основная характеристика сырья приведены в табл. 1.

Физико-химические свойства сырья

Таблица 1

Свойств	a	Вакуумный дис- тиллят VD-2	Вакуумный дис- тиллят VD-4	Деасфальтизат
Фракционный состав:				
Температура выкипания	я 5%, °С	не менее 393	не менее 470	- Change
Температура выкипания	95%, °C	не более 470	не более 560	-
Показатель преломлени		1,5038	1,5140	1,5039
Вязкость кинематическа	ая, v, сСт:		Lake or makes	
	при 40°С	65,5956	_	_
	при 50°С	39,6795	149,8136	_
	при 60°С	- mare	ACCOUNT NOT THE	109,8291
	при 70°C	17,6130	53,7595	69,5308
	при 100°C	6,8576	не менее 17,0	не менее 17,0
Показатели:				
	v^{50}/v^{70}	2,25	2,79	_
	v^{60}/v^{70}	<u></u>		1,58
Температура вспышки (о.т.), °С	не менее 220	не более 270	
Коксуемость, %		Mary Mary 120 Co.	- CHE (10)	не более 1,2

Оценку экстракционных свойств исследуемых систем N-метилпирролидон + активирующая добавка проводили на основе сопоставительного анализа результатов се-

рии одноступенчатых и многоступенчатых экстракций выбранными растворителями на дистиллятном и остаточном сырье.

Условия проводимой экстракции определялись промышленным вариантом технологического процесса для данных масляных фракций, а именно: температура экстракции -60°C, кратность растворитель: сырье = 2:1 (мас.ч.).

Серию опытов по одноступенчатой и многоступенчатой экстракции проводили по известным методикам [3, 8].

Рафинат и экстракт подвергают анализу для определения таких показателей процесса экстракции, как избирательность растворителя, глубина очистки, а также качество получаемого рафината. Процесс депарафинизации очищенного масла осуществляют методом комплексообразования н-алканов с карбамидом.

В табл. 2, табл. 3 и табл. 4 представлены результаты одностадийной очистки минеральных масел различной вязкости (VD-2, VD-4, деасфальтизат) промышленными экстрагентами фенолом и N-метилпирролидоном, и N-метилпирролидоном, содержащим полярную добавку.

Таблица 2 Результаты одноступенчатой экстракции (сырье – VD-2, кратность растворитель: сырье = 2:1, температура экстракции 60°С)

	Растворитель			
Показатели	Фенол	№-МП	N-MП + 5% ДМСО	
Выход рафината, % мас. Показатель преломления n _D ⁵⁰ :	77	90,6	87,3	
рафината	1,4901	1,4909	1,4900	
экстракта	1,5497	1,5711	1,5743	
Вязкость кинематическая v, сСт,				
при 50°C	26,5812	30,0051	28,3762	
Селективность разделения S	0,0596	0,0802	0,0843	
Показатель v^{50}/v^{70}	2,18	2,18	1,76	

^{*} Растворитель содержит 5% мас. воды.

Из приведенных данных следует, что использование N-метилпирролидона с добавкой ДМСО позволяет улучшить показатели его экстракции.

Для подтверждения полученных результатов была проведена многоступенчатая экстракция VD-4, моделирующая промышленную технологию. Результаты многоступенчатой экстракции показаны в табл. 5. Согласно данным, при введении высокополярной добавки в N-метилпирролидон возрастает выход рафината и улучшается его вязкостно-температурная характеристика.

Эти закономерности сохраняются и для депарафинированного масла, которое было получено методом карбамидной депарафинизации рафинатов. Как показано, выход депарафинированного масла по предлагаемому способу выше, чем по известным промышленным вариантам, при этом сохраняются высокие вязкостно-температурные характеристики, так как отношение значения величины кинематической вязкости при 50°C к значению кинематической вязкости при 70°C у рафинатов, полученных при очистке N-метилпирролидоном, содержащим диметилсульфоксид, ниже, а выход рафината возрастает.

Таблица 3 Результаты одноступенчатой экстракции (сырье – VD-4, кратность растворитель: сырье = 2:1, температура экстракции 60°C)

Managemen	Растворитель			
Показатели	Фенол	N-МП	N-МП + 5% ДМСО	
Выход рафината, % мас.	80,1	94,9	94,0	
Показатель преломления n _D ⁵⁰ :		11.70		
рафината	1,5020	1,5001	1,5011	
экстракта	1,5415	1,5781	1,5661	
Вязкость кинематическая v, сСт,				
при 50°C	72,3409	78,0767	78,0213	
Селективность разделения S	0,0395	0,0780	0,0650	
Показатель v ⁵⁰ /v ⁷⁰	2,42	2,48	2,48	

Таблица 4 Результаты одноступенчатой экстракции (сырье – деасфальтизат, кратность растворитель: сырье = 2:1, температура экстракции 60°С)

Панада		Растворитель	
Показатели	Фенол	N-МП	N-MП + 5% ДМСО
Выход рафината, % мас.	89,9	95,5	97,1
Показатель преломления пр 50:			Leben Police - x
рафината	1,4991	1,4970	1,4980
экстракта	1,5465	1,5503	1,5603
Вязкость кинематическая v, сСт,			
при 60°C	64,7765	74,0487	74,5808
Селективность разделения S	0,0474	0,0533	0,0623
Показатель v^{60}/v^{70}	1,56	1,64	1,59

Таблица 5 Результаты многоступенчатой экстракции (сырье – VD-4, кратность растворитель: сырье = 2:1, температура экстракции 60° C)

Показатели	Растворитель *		
Показатели	Фенол	N-МП	N-MП + 5% ДМСО
Выход рафината, % мас.	79,9	88,2	90,1
Показатель v^{50}/v^{70} для очищенного масла	2,32	2,45	2,31
Селективность разделения S	0,0257	0,0693	0,0643
Выход депарафинированного масла	69,8	78,2	80,2
(рафината), % мас.			
Показатель преломления рафината, n _d ⁵⁰	1,5013	1,5005	1,5015
Показатель v^{50}/v^{70} для депарафинированно-	2,60	2,84	2,69
го масла			

Согласно данным, при введении высокополярной добавки в N-метилпирролидон возрастает выход рафината и улучшается его вязкостно-температурная характеристика.

Анализ очистки минеральных масел N-метилпирролидоном показал, что введение полярной добавки в N-метилпирролидон не требует существенных изменений известной технологии.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (X 02 M-120).

ЛИТЕРАТУРА

- 1. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. М.: Химия, 1988. 592 с.
- 2. Черножуков Н.И. Технология переработки нефти и газа. Часть 3. Очистка нефтепродуктов, производство специальных продуктов. М.: Химия, 1967. 360 с.
- 3. Гольдберг Д.О. Контроль производства масел и парафинов. М.: Химия, 1964. 246 с.
- 4. Битрих Г.-Й., Гайле А.А., Лепель Д.Н. и др. Разделение углеводородов с использованием селективных растворителей. Л.: Химия, 1987. 192 с.
- 5. Школьников В.М., Колесник И.О. Совершенствование процессов селективной очистки и деасфальтизации масляного сырья на основе применения новых растворителей. М.: ЦНИИТЭнефтехим, 1986. 47 с.
- 6. Школьников В.М., Колесник И.О. Пуск первой в отрасли установки селективной очистки масляного сырья N-метилпирролидоном // Нефтепереработка и нефтехимия. М.: ЦНИИТЭнефтехим, 1991. Вып. 1. С. 11–14.
- 7. Бондарук О.Н., Талерко Е.С. Совершенствование технологии очистки минеральных масел // Тезисы 52-й студенческой научно-технической конференции. Мн.: БГТУ, 2001. С. 47.
- 8. Грушова Е.И., Бондарук О.Н., Талерко Е.С. Исследование влияния активирующих добавок на экстракционные свойства фенола // Труды БГТУ. Сер. хим. и технол. орган. в-в. 2001. Вып. IX. С.73–76.

УДК 541.8,541.67

А.В. Кучук, ассистент; С.В. Латышев, студент; Е.И. Грушова, доцент, Н.Р. Прокопчук, профессор

ВЛИЯНИЕ ДОБАВОК N-МЕТИЛПИРРОЛИДОНА НА СВОЙСТВА ТРИЭТИЛЕНГЛИКОЛЯ И ТЕТРАЭТИЛЕНГЛИКОЛЯ

Influence of the N-methylpyrrolidon's additives on the propeties of triethylene glycol and tetraethylene glycol has been investigated.

Данная работа является продолжением выполненных ранее исследований [1] и посвящена изучению объемных свойств систем гликоль — N-метилпирролидон (N-МП), представляющих интерес для процессов экстракции. В качестве гликолей использовали триэтиленгликоль (ТЭГ) и тетраэтиленгликоль (ТетраЭГ).

Согласно [2], в системах ТЭГ – N-МП и ТетраЭГ – N-МП гликоли обладают одновременно протонодонорными и протоноакцепторными группами, а N-МП содержит только протоноакцепторную группу, в этом случае растворы могут образовываться с разными тепловыми эффектами, которые, в свою очередь, могут изменяться с составом раствора.

Бинарные жидкие системы в широком интервале концентраций готовили весовым методом с точностью $\pm 0,1\%$. Для всех растворов измеряли их плотности и вязкости при температурах 20, 40 и 60°C. Термостатирование исследуемых образцов осуществляли в ультратермостате с точностью $\pm 0,5$ °C.

На рисунках приведены концентрационные зависимости изменения энергии активации вязкого течения (E^E_A) при смешении ТЭГ (рис. 1) и ТетраЭГ (рис. 2) с N-метилпирролидоном, рассчитанные на основе данных эксперимента [3].