КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ФЕРРИТОВ Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ СО СТРУКТУРОЙ МАГНЕТОПЛЮМБИТА

Полыко Д.Д.¹, Башкиров Л.А.¹, Сирота И.М.³

¹ - Белорусский государственный технологический университет 220050, Минск, ул. Свердлова 13^а

² - Научно-практический центр НАН Белоруссии по материаловедению 220072, Минск,

ул. П. Бровки 17

³ - Институт проблем управления Российской академии наук, Москва

Результаты работ [1, 2, 3] показали, что перспективными материалами для изготовления керамических постоянных магнитов с улучшенными характеристиками являются твердые растворы замещения на основе SrFe₁₂O₁₉, в которых часть ионов Sr²⁺ замещена ионами La³⁺ и для сохранения электронейтральности эквивалентное количество ионов Fe^{3+} замещено ионами $Zn^{2+}[1]$, $Co^{2+}[2, 3]$. Так в работе [1] показано, что анизотропный постоянный магнит из феррита Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉ имеет величину энергетического произведения (BH)_{max} = 41 кДж/м³. На основе результатов работ [2, 3] изготовлен анизотропный постоянный магнит из феррита Sr_{0.8}La_{0.2}Fe_{11.8}Co_{0.2}O₁₉ имеющий величину энергетического произведения (BH)_{max} = 38.4 кДж/м³. В настоящее время опубликован ряд работ, в которых исследованы кристаллическая структура, спектры Мессбауэра и магнитные свойства ферритов Sr_{1-x}Ln_xFe³⁺_{12-x}Fe²⁺_xO₁₉, Sr_{1-x}Ln_xFe_{12-x}Co_xO₁₉ (Ln – Pr, Nd [4 - 6]). Однако, отсутствуют работы посвященные изучению подобных систем, но в которых ионы Fe³⁺ замещались бы ионами Zn^{2+} , как в системе $Sr_{1-x}La_xFe_{12-x}Zn_xO_{19}$, изученной в работе [1]. Поэтому целью данной работы является, исследование кристаллической структуры при комнатной температуре и при температурах 6-308 К намагниченности насыщения, остаточной намагниченности, коэрцитивной силы ферритов $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5).

На основе данных рентгеновских дифрактограмм установлено, что однофазные образцы ферритов $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$ имеющие структуру магнетоплюмбита образуются при степени замещения $x \le 0.2$. Рентгеновская дифрактограмма образца со степенью замещения x = 0.3 показывает, что этот образец наряду с фазой магнетоплюмбита содержит в небольшом количестве $ZnFe_2O_4$, но рефлексы принадлежащие фазам α -Fe₂O₃ и PrFeO₃ еще отсутствуют. На рентгеновской дифрактограмме образцов со степенью замещения x = 0.4, 0.5 присутствуют рефлексы принадлежащие фазам $ZnFe_2O_4$, α -Fe₂O₃.

Параметры *a*, *c*, объем *V* элементарной кристаллической ячейки и рентгеноструктурная илотность $\rho_{peнm}$ ферритов Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ при увеличении степени замещения *x* до 0.3 изменяются линейно по уравнениям: a(Å) = 5.8879 - 0.0162 x; c(Å) = 23.027 + 0.449 x; $V(Å^3) = 691.10 + 9.65 x$, $\rho_{pehm}(r/cm^3) = 5.102 + 0.199x$. Параметры *a*, *c* и объем *V* элементарной ячейки ферритов при степенях замещения x = 0.4, 0.5 являются одинаковыми и их величины немного больше, чем для феррита со значением x = 0.3. Пересечение экстраполированных линейных зависимостей параметра *c* и объема *V* элементарной ячейки ферритов Sr_{1-x}Pr_xFe₁₂. _xZn_xO₁₉ от *x* наблюдается при значениях $x \approx 0.32$ и 0.36 соответственно.

Измерения удельной намагниченности (σ) проведенные в интервале температур 6-308 К в магнитных полях до 14 Т показывают, что намагниченность насыщения достигается в поле 3 Т, выше которого наблюдается небольшое безгистерезисное возрастание намагниченности. По полученным петлям гистерезиса были определены удельная намагниченность насыщения (σ_s), удельная остаточная намагниченность (σ_r) и коэрцитивная сила ($_{\sigma}H_{C}$). По формуле:

$$n_s = \frac{\sigma_s \cdot M}{N_A \cdot \mu_B},\tag{1}$$

где M – молярная масса соответствующего феррита $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$, N_A – число Авогадро, μ_B – магнетон Бора, рассчитана намагниченность насыщения (n_s), выраженная в магнетонах Бора на одну формульную единицу соответствующего феррита. По этой же формуле (1) рассчитана остаточная намагниченность насыщения одной формульной единицы (n_r).

Рис. 1 Зависимость намагниченности насыщения n_s одной формульной единицы ферритов Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ при температурах 6 (1) и 308 К (2), коэрцитивной силы _оH_c при 308 К (3) от степени замещения x.

Зависимость намагниченности насыщения n_s от степени замещения x ферритов Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ при температурах 6 и 308 К приведена на рис. 1. (кривые 1, 2). В соответствии с двухподрешеточной моделью Гортера [7] намагниченность насыщения n_s феррита SrFe₁₂O₁₉ при 0 К равна 20 µ_B и определяется разницей магнитных моментов двух антиферромагнитно ориентированных подрешеток В и А, в которых расположенны Fe³⁺, магнитный момент которых ионов соответственно 8 И 4 равен $5 \mu_B$ $(n_s = (8 - 4) \cdot 5 = 20 \,\mu_B)$. Экспериментальное значение намагниченности одной формульной единицы феррита SrFe₁₂O₁₉ при 6 К в поле 3 Т равно 19.60 μ_B (рис. 1, кривая 1), что меньше теоретической величины 20 μ_B лишь на 2%. Для феррита при степени замещения x = 0.1наблюдается увеличение n_s при 6 К до величины 19.94 µ_B, при дальнейшем увеличении x эта величина уменьшается и при x = 0.2, 0.3 равна 19.41, 19.12 μ_B соответственно. Увеличение n_s при x = 0.1 указывает на то, что диамагнитные ионы Zn^{2+} преимущественно располагаются в тетраэдрических позициях 4f₁ подрешетки A и уменьшают магнитный момент этой подрешетки, ориентированный антипарралельно магнитному моменту подрешетки В, что приводит к увеличению магнитного момента всей кристаллической решетки. Теоретическая величина намагниченности насыщения n_s для феррита Sr_{0.9}Pr_{0.1}Fe_{11.9}Zn_{0.1}O₁₉ согласно этой модели. определяется выражением $n_s = (8.5 - 3.9.5 - 0.1.0) = 20.5 \mu_B$. Следовательно, согласно этой модели, величина намагниченности насыщения n_s должна увеличиваться на 0.5 µ_B (2.5%) по сравнению с намагниченностью для феррита SrFe₁₂O₁₉. Согласно экспериментальным данным n_s для $Sr_{0.9}Pr_{0.1}Fe_{11.9}Zn_{0.1}O_{19}$ на 0.34 μ_B (1.7%) больше, чем для

SrFe₁₂O₁₉. При температуре 308 К намагниченность насыщения n_s ферритов Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ с x = 0, 0.1, 0.2 равна 13.84, 15.94, 14.89 μ_B (рис 1, кривая 2), из этого следует, что величина n_s ферритов с x = 0.1, 0.2 на 15.2 и 7.6% соответственно больше этой величины для SrFe₁₂O₁₉.

Рис. 2 Зависимость остаточной намагниченности ферритов $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$ от степени замещения *x* при температурах 6 (1) и 308 K (2).

В интервале температур 6 – 308 К для ферритов $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$ максимальную величину коэрцитивной силы $_{\sigma}H_C$ имеет феррит при x = 0.2. При температуре 308 К она равна 3450 Э, что на 8.5% больше, чем для $SrFe_{12}O_{19}$ (рис 1, кривая 3). Следует отметить, что по данным работы [1] намагниченность n_s при комнатной температуре в магнитном поле 12 кЭ для ферритов системы $Sr_{1-x}La_xFe_{12-x}Zn_xO_{19}$ при x = 0; 0.1; 0.2; 0.3 равна 13.8; 14.05; 14.2; 14.3 μ_B соответственно. Намагниченность n_s для феррита $Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O_{19}$, из которого в работе [1] был изготовлен анизотропный постоянный магнит с величиной (BH)_{max} = 41 кДж/м³, лишь на 3.6% больше, а коэрцитивная сила $_{\sigma}H_C$ на 3.4% меньше, чем для феррита $Sr_{1-x}Pr_xFe_{12-x}Zn_xO_{19}$ при увеличении степени замещения x до 0.3 уменьшается незначительно (рис. 2). Так при 308 К для феррита $SrFe_{12}O_{19}n_r = 6.86 \mu_B$, а для феррита с $x = 0.3 n_r = 6.78 \mu_B$.

Литература:

- 1. Taguchi H., Takeishi T., Suwa K. Journal de Physique IV: JP. 7, 1, C1-311 (1997).
- 2. Obara J., Yamamoto H., J. of the Japan Society of Powder and Powder Metallergy 47, 7, 796 (2000).
- 3. Yamomoto H., Obara J., J. of the Japan Society of Powder and Powder Metallergy 47, 2, 160 (2000).
- 4. Mocuta H., Morel A. J. of Alloys and Compounds. 364, 1, 48 (2004).
- 5. Lechevallier L., Le Breton J.M. J. of Magnetism and Magnetic Materials 316, 2, e109 (2007).
- 6. Lechevallier L., Le Breton J.M. J. of Phys: Condens. Matter. 20, 175203 (2008).
- 7. Гортер Е.В. УФН. 57, **2**, 279 (1955).