ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЛОИСТЫХ ПЕРОВСКИТНЫХ ОКСИДОВ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ

А.И. Клындюк, Е.А. Чижова

Белорусский государственный технологический университет 220050, Минск, ул. Свердлова, 13А

Перспективными материалами для эффективной высокотемпературной термоэлектроконверсии на воздухе являются оксиды, наряду с высокой термоэлектрической добротностью характеризующиеся высокой термической и химической стабильностью. Известно, что высокой термоэлектрической добротностью обладают слоистые кобальтиты натрия (Na_x. CoO₂) [1,2] и кальция (Ca₃Co₄O₉) [2]), перовскитные кобальтиты (LaCoO₃) [3], титанаты (Ba,Sr)TiO₃ [4] и плюмбаты (Ba,Sr)PbO₃ [3,5] и ряд других оксидов, однако поиск новых оксидных термоэлектриков (OTЭ) представляет значительный интерес. Слоистые перовскитные оксиды типа LnBaMe'Me"O₅₊₈ (Ln = P3Э, Me', Me" – Fe, Co, Cu) характеризуются высокими значениями термо–ЭДС и электропроводности при повышенных температурах [6,7], что указывает на перспективность поиска новых ОТЭ среди соединений этого класса.

В данной работе исследованы термоэлектрические свойства перовскитов $LnBaMe'Me''O_{5+\delta}$ (Ln = La, Pr, Nd, Sm, Gd; Me'Me'' – CuFe, CoFe, CoCu) и рассмотрена перспективность использования этих фаз в качестве оксидных термоэлектриков.

Поликристаллические образцы LnBaMe'Me'O_{5+δ} (Ln = La, Pr, Nd, Sm. Gd; Me'Me'' –FeCu, FeCo, CuCo) получали керамическим методом из карбонатов бария и оксидов остальных металлов (квалификация не ниже «ч.») на воздухе в интервале температур 1073–1473 К [7].

Рис. 1. Зависимости параметров элементарной ячейки a (1-3), c (4-6) и индекса кислородной нестехиометрии δ (7-9) перовскитов LnBaCuFeO_{5+ δ} (1,4,7), LnBaCoFeO_{5+ δ} (2,5,8) и LnBaCoCuO_{5+ δ} (3,6,9) от ионного радиуса РЗЭ ($R_{1,n}$ ³⁺) [10]

Ренттенофазовый анализ (РФА) полученных образцов проводили на дифрактометре Bruker D8 XRD Advance (СиК_и-излучение). Содержание кислорода в образцах (5+б) определяли иодометрически. Электропроводность (о) и термо-ЭДС (S) спеченной керамики изучали на воздухе в интервале температур 300-1100 K по методикам, описанным R [8]. Значения электропроволности керамики LnBaMe'Me"O5+8 пересчитывали на нулевую пористость по методу [7,9]. По значениям о и S были рассчитаны величины фактора мощности исследованной керамики $P(P = S^2 \cdot \sigma)$.

После завершения синтеза на воздухе образцы фаз $LnBaMe'Me''O_{5+\delta}$ были однофазными, в пределах погрешности РФА, и имели перовскитную структуру, рефлексы которой были проиндицированы в рамках кубической сингонии (пр. гр. симм. $Pm3m: a = a_p$) для Ln = La и в рамках тетрагональной сингонии (пр. гр. симм. $P4/mmm: a = b \approx a_p, c \approx 2 \cdot a_p) - для$ <math>Ln = Pr, Nd, Sm, Gd. Согласно данным иодометрии, содержание слабосвязанного кислорода (δ) в образцах уменьшалось при уменьшении ионного радиуса редкоземельного элемента (P3Э) и изменялось в пределах 0.08–0.47, 0.37–0.97 и 0.02–0.62 для феррокупратов, феррокобальтитов и купрокобальтитов РЗЭ-бария соответственно (рис. 1), из чего следует, что средняя степень окисления катионов 3*d*-металлов в этих соединениях составляла +(2.58-2.97), +(2.87-3.47) и +(2.02-3.12). Как видно из рис. 1, параметр *c* фаз *Ln*BaMe'Me"O_{5+δ} уменьшается при уменьшении ионного радиуса РЗЭ [10], а параметр *a* слабо зависит от радиуса РЗЭ. Таким образом, уменьшение радиуса РЗЭ в фазах *Ln*BaMe'Me"O_{5+δ} сопровождается ростом концентрации кислородных вакансий в их структуре и приводит к преимущественному сжатию элементарной ячейки этих фаз в направлении оси *c*, а в направлении $\perp c$ размеры элементарной ячейки фаз *Ln*BaMe'Me"O_{5+δ} почти не изменяются. Найденные нами значения параметров элементарной ячейки феррокупратов LnBaFeCuO_{5+δ} и фазы LaBaCu-CoO_{5+δ} хорошо согласуются с литературными данными [11-13].

Все оксиды LnBaMe'Me"О₅₊₈ были полупроводниками *p*-типа (кроме LaBaFeCoO₅₊₈, для которого при T < 975 K S < 0) (рис. 2), величина электропроводности (σ) которых, в целом,

уменьшалась, а KOэффициента термо-ЭДС (S) - увеличивалась при уменьшении радиуса РЗЭ. Наибольшими значениями σ феррокобальтиты обладали (омакс≈160 См/см вблизи 650 К для NdBaFeCoO₅₊₈ (рис. 2, г)), а коэффициента термо-ЭДС – феррокупраты РЗЭбария (S_{макс} ≈ 500-550 мкВ/К 1000–1050 K при для GdBaFeCuO₅₊₈ (рис. 2, 6). При высоких температурах характер проводимости феррокобальтитов РЗЭ-бария, а также фаз LnBaCuMeO5+8 (Ln = La, Pr, Nd; Me = Fe, Cu)изменялся от полупроводныкового $\left(\frac{\partial \sigma}{\partial T} > 0\right)$ к метал- $\left(\frac{\partial\sigma}{\partial T}<0\right)$ лическому (рис. 2, а, г, ж), что сопровождалось резким ростом S (рис. 2, б, д, з). Изменение хода температурных зависимостей свойств оксидов LnBaMe'Me"О5+8 при повышенных температурах обусловлено выделением из их кристаллической решетки слабосвязанного кислорода (δ) вследствие потери ими термической стабильности [14].

Рис. 2. Температурные зависимости электропроводности (σ) (*a*, *z*, *ж*), коэффициента термо-ЭДС (*S*) (*б*, *д*, *э*) и фактора мощности (*P*) (*e*, *e*, *u*) фаз LnBaCuFeO_{5+δ} (*a*-*e*), LnBaCoFeO_{5+δ} (*z*-*e*) и LnBaCoCuO_{5+δ} (*ж*-*u*): Ln = La (1), Pr (2), Nd (3), Sm (4), Gd (5).

На зависимостях S = f(T) кобальтсодержащих оксидов SmBaFeCoO₅₊₈, GdBaFeCoO₅₊₈, SmBaCuCoO₅₊₈ и GdBaCuCoO₅₊₈ наблюдается максимум вблизи 350 K, 450 K, 510 K и 365 K, cootветственно (рис. 2, ∂ , 3). Увеличение S фаз LnBaMeCoO₅₊₈ (Ln = Sm, Gd; Me = Fe, Cu) в области температур 300–350 (510) К обусловлено, вероятно, изменением спинового состояния входящих в их состав катионов кобальта Co³⁺, Co⁴⁺ из промежуточносцинового (IS) в высокоспиновое состояние (HS) Co⁺⁺_{IS} $(t_{2g}^{*}e_{g}^{1}) \rightarrow Co^{3+}_{HS} (t_{2g}^{*}e_{g}^{2}), Co^{4+}_{IS} (t_{2g}^{*}e_{g}^{1}) \rightarrow Co^{4+}_{HS} (t_{2g}^{*}e_{g}^{1}) \rightarrow Co^{4+}_{HS} (t_{2g}^{*}e_{g}^{1})$ аналогично спиновым переходам Co³⁺ в перовскитных кобальтитах P3Э LnCoO₃ [15].

Рассчитанные по экспериментально полученным значениям о и S величины фактора мощности (P) перовскитов LnBaMe'Me"О5+8 представлены на рис. 3, в, е, и. Как видно, значения Р исследованных материалов, в целом, увеличиваются с ростом температуры и сильно зависят от природы входящих в состав этих фаз РЗЭ и 3*d*-металлов. Максимальными значениями P характеризуются оксиды PrBaFeCuO₅₊₆, SmBaCuFeO₅₊₆, GdBaCuFeO₅₊₆ и NdBaCoFeO₅₊₈: $\approx 135, 63, 39 \text{ и } 39 \text{ мкBt} \cdot \text{M}^{-1} \text{ K}^{-2}$ соответственно при T = 1050 K (рис. 2, *e*, *e*). Эти величины существенно ниже значений фактора мощности натрий-кобальтоксидных бронз (для NaCo₁₈Cu_{0.2}O₄, например, $P \approx 3$ мВт м⁻¹ K⁻² при 1073 К [16]), однако близки к величинам P керамики на основе Ca₃Co₂O₆ (для твердых растворов (Ca Bi)₃(Co Cu)₂O₆ $P \approx 30-$ 50 мкВт м⁻¹ К⁻² вблизи 1173 К [17], а для фазы Са_{2.85}Ег_{0.15}Со₂О₆ Р ≈ 11 мкВт м⁻¹ К⁻² при T = 1073 К [18]) и LaCoO₃ (для LaCo_{0.80}Ti_{0.20}O_{2.86} и LaCo_{0.80}Ni_{0.20}O_{2.95} фактор мощности составляет соответственно 28.2 и 9.5 мкВт м⁻¹ К⁻² при 1243 К [3]). Таким образом, хотя перовскиты LnBaMe'Me"O₅₊₈ не могут пока конкурировать с оксидными термоэлектриками на базе NaCo₂O₄, сопоставление наших результатов с литературными данными [3,17,18] позволяет сделать заключение о возможности использования слоистых перовскитов LnBaMe'Me"О 5+5 как основы для разработки новых термоэлектрических материалов.

Работа выполнена в рамках ГКПНИ "Кристаллические и молекулярные структуры" (задание 33).

Список литературы

- 1. I. Terasaki, Y. Sasago, K. Uchinokura // Phys. Rev. B. 56, R12685 (1997-II).
- 2. Oxide Thermoelectrics. Research Signpost (ed. by Koumoto K., Terasaki I., Murayama N.). Trivandrum, India. 2002. 255 p.
- 3. R. Robert, L. Bocher, M. Trottmann, A. Reller, A. Weidenkaff. J. Solid State Chem. 179, 3893 (2006).
- 4. H. Muta, K. Kurosaki, S. Yamanaka // J. Alloys and Comp. 368, 22 (2004).
- 5. M. Yasukawa, N. Murayama // Mat. Sci. & Eng. B54, 64 (1998).
- 6. A.A. Taskin, A.N. Lavrov, Y. Ando // Phys. Rev. B. 73, 121101R (2006).
- 7. А.И. Клындюк // ФТТ. **51**, 237 (2009).
- 8. A.I. Klyndyuk, Ye.A. Chizhova // Funct. Mater. 16, 17 (2009).
- 9. A.K. Tripathi, H.B. Lal // Mater. Res. Bull. 15, 233 (1980).
- 10. R.D. Shannon, C.T. Prewitt // Acta Cryst. B. 25 (Pt. 5), 946 (1969).
- M. Pissas, C. Mitros, G. Kallias, V. Psycharis, A. Simopoulos, A. Kostikas, D. Niarchos // Physica C. 192, 35 (1992).
- 12. L. Er-Rakho, N. Nguyen, A. Ducouret, A. Samdi, C. Michel // Solid State Sciences. 7, 165 (2005).
- 13. L. Suescun, C.Y. Jones, C.A. Cardoso, J.W. Lynn, B.H. Toby, F.M. Araujo-Moreira, O.F. de Lima, H. Pardo, A.W. Mombru // Phys. Rev. B. 71, 144405 (2005).
- 14. А.И. Клындюк, Е.А. Чижова // Неорган. материалы. 42, 485 (2006).
- 15. M. Itoh, J. Hashimoto, S. Yamaguchi, Y. Tokura // Physica B. 281&282, 510 (2000).
- 16. K. Park, K.U. Jang, H.-C. Kwon, J.-G. Kim, W.-S. Cho. J. All. And Comp, 419, 213 (2006).
- 17. K. Iwasaki, H. Yamane, J. Takahashi, S. Kubota, T. Nagasaki, Y. Arita, Y. Nishi, T. Matsui, M. Shimada. J. Phys. Chem. Sol. 66, 303 (2005).
- 18. D. Lu, G. Chen, J. Pei, X. Yang, H. Xian // J. Rare Earhts. 26, 168 (2008).